GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Zoonoses and Public Health, Wiley, Vol. 69, No. 5 ( 2022-08), p. 560-571
    Abstract: Interspecies transmission of influenza A virus (IAV) between pigs and people represents a threat to both animal and public health. To better understand the risks of influenza transmission at the human–animal interface, we evaluated 1) the rate of IAV detection in swine farmworkers before and after work during two human influenza seasons, 2) assessed risk factors associated with IAV detection in farmworkers and 3) characterized the genetic sequences of IAV detected in both workers and pigs. Of 58 workers providing nasal passage samples during 8‐week periods during the 2017/18 and 2018/19 influenza seasons, 33 (57%) tested positive by rRT‐PCR at least once. Sixteen (27%) workers tested positive before work and 24 (41%) after work. At the sample level, 58 of 1,785 nasal swabs (3.2%) tested rRT‐PCR positive, of which 20 of 898 (2.2%) were collected prior to work and 38 of 887 (4.3%) after work. Although farmworkers were more likely to test positive at the end of the working day (OR = 1.98, 95% CI 1.14–3.41), there were no influenza‐like illness (ILI) symptoms, or other risk indicators, associated with IAV detection before or after reporting to work. Direct whole‐genome sequencing from samples obtained from worker nasal passages indicated evidence of infection of a worker with pandemic 2009 H1N1 of human‐origin IAV (H1‐pdm 1A 3.3.2) when reporting to work, and exposure of several workers to a swine‐origin IAV (H1‐alpha 1A 1.1) circulating in the pigs on the farm where they were employed. Our study provides evidence of 1) risk of IAV transmission between pigs and people, 2) pandemic H1N1 IAV infected workers reporting to work and 3) workers exposed to swine harbouring swine‐origin IAV in their nasal passages temporarily. Overall, our results emphasize the need to implement surveillance and transmission preventive protocols at the pig/human interface.
    Type of Medium: Online Resource
    ISSN: 1863-1959 , 1863-2378
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2271118-1
    SSG: 22
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Veterinary Research, Springer Science and Business Media LLC, Vol. 51, No. 1 ( 2020-12)
    Abstract: Influenza A viruses evolve rapidly to escape host immunity. In swine, this viral evolution has resulted in the emergence of multiple H1 and H3 influenza A virus (IAV) lineages in the United States (US) pig populations. The heterologous prime-boost vaccination strategy is a promising way to deal with diverse IAV infection in multiple animal models. However, whether or not this vaccination strategy is applicable to US swine to impart immunity against infection from North American strains of IAV is still unknown. We performed a vaccination-challenge study to evaluate the protective efficacy of using multivalent inactivated vaccine and/or a live attenuated IAV vaccine (LAIV) in pigs following multiple prime-boost vaccination protocols against a simultaneous H1N1 and H3N2 IAV infection. Our data show that pigs in the heterologous prime-boost vaccination group had more favorable outcomes consistent with a better response against virus challenge than non-vaccinated pigs. Additionally, delivering a multivalent heterologous inactivated vaccine boost to pigs following a single LAIV administration was also beneficial. We concluded the heterologous prime boost vaccination strategy may potentiate responses to suboptimal immunogens and holds the potential applicability to control IAV in the North American swine industry. However, more studies are needed to validate the application of this vaccination approach under field conditions.
    Type of Medium: Online Resource
    ISSN: 1297-9716
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2012391-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: eLife, eLife Sciences Publications, Ltd, Vol. 11 ( 2022-09-02)
    Abstract: Swine influenza A viruses cause severe illness among pigs and financial losses on pig farms worldwide. These viruses can also infect humans and have caused deadly human pandemics in the past. Influenza A viruses are dangerous because viruses can be transferred between humans, birds and pigs. These co-infections can allow the viruses to swap genetic material. Viral genetic exchanges can result in new virus strains that are more dangerous or that can infect other types of animals more easily. Farmers vaccinate their pigs to control the swine influenza A virus. The vaccines are regularly updated to match circulating virus strains. But the virus evolves rapidly to escape vaccine-induced immunity, and infections are common even in vaccinated pigs. Learning about how vaccination affects the evolution of influenza A viruses in pigs could help scientists prevent outbreaks on pig farms and avoid spillover pandemics in humans. Li et al. show that influenza A viruses are less likely to swap genetic material in vaccinated and boosted pigs than in unvaccinated animals. In the experiments, Li et al. collected swine influenza A samples from the lungs of pigs that had received different vaccination protocols. Next, Li et al. used next-generation sequencing to identify new mutations in the virus or genetic swaps among different strains. In pigs infected with both the H1N1 and H3N2 strains of influenza, the two viruses began trading genes within a week. But less genetic mixing occurred in vaccinated and boosted pigs because they spent less time infected with both viruses than in unvaccinated pigs. The vaccination status of the pig did not have much effect on how many new mutations occurred in the viruses. The experiments show that vaccinating and boosting pigs against influenza A viruses may protect against genetic swapping among influenza viruses. If future studies on pig farms confirm the results, the information gleaned from the study could help scientists improve farm vaccine protocols to further reduce influenza risks to animals and people.
    Type of Medium: Online Resource
    ISSN: 2050-084X
    Language: English
    Publisher: eLife Sciences Publications, Ltd
    Publication Date: 2022
    detail.hit.zdb_id: 2687154-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...