GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Li, Changzhi  (6)
  • Zhang, Bo  (6)
  • Chemistry/Pharmacy  (6)
Material
Publisher
Language
Years
Subjects(RVK)
  • Chemistry/Pharmacy  (6)
RVK
  • 1
    In: Angewandte Chemie International Edition, Wiley, Vol. 61, No. 38 ( 2022-09-19)
    Abstract: Direct production of heterocyclic aromatic compounds from lignin β‐O‐4 models remains a huge challenge due to the incompatible catalysis for aryl ether bonds cleavage and heterocyclic ring formation. Herein, the first example of quinoline synthesis from β‐O‐4 model compounds by a one‐pot cascade reaction is reported in yields up to 89 %. The reaction pathway involves selective cleavage of C−O bonds, dehydrogenation, aldol condensation, C−N bond formation along with heterocyclic aromatic ring construction. The control experiments suggest that both imine and chalcone were identified as the key intermediates, and the rate determining step as well as the preferred pathway were experimentally clarified and supported by density functional theory (DFT) calculations. Based on this protocol, the conversion of β‐O‐4 polymer delivered 56 wt % yield of quinoline derivative in three steps. This transformation provides a potential petroleum‐independent choice for heterocyclic aromatic chemicals.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Angewandte Chemie, Wiley, Vol. 134, No. 38 ( 2022-09-19)
    Abstract: Direct production of heterocyclic aromatic compounds from lignin β‐O‐4 models remains a huge challenge due to the incompatible catalysis for aryl ether bonds cleavage and heterocyclic ring formation. Herein, the first example of quinoline synthesis from β‐O‐4 model compounds by a one‐pot cascade reaction is reported in yields up to 89 %. The reaction pathway involves selective cleavage of C−O bonds, dehydrogenation, aldol condensation, C−N bond formation along with heterocyclic aromatic ring construction. The control experiments suggest that both imine and chalcone were identified as the key intermediates, and the rate determining step as well as the preferred pathway were experimentally clarified and supported by density functional theory (DFT) calculations. Based on this protocol, the conversion of β‐O‐4 polymer delivered 56 wt % yield of quinoline derivative in three steps. This transformation provides a potential petroleum‐independent choice for heterocyclic aromatic chemicals.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Angewandte Chemie International Edition Vol. 60, No. 38 ( 2021-09-13), p. 20666-20671
    In: Angewandte Chemie International Edition, Wiley, Vol. 60, No. 38 ( 2021-09-13), p. 20666-20671
    Abstract: Catalytic conversion of lignin into heteroatom functionalized chemicals is of great importance to bring the biorefinery concept into reality. Herein, a new strategy was designed for direct transformation of lignin β‐O‐4 model compounds into benzylamines and phenols in moderate to excellent yields in the presence of organic amines. The transformation involves dehydrogenation of C α −OH, hydrogenolysis of the C β −O bond and reductive amination in the presence of Pd/C catalyst. Experimental data suggest that the dehydrogenation reaction proceeds over the other two reactions and secondary amines serve as both reducing agents and amine sources in the transformation. Moreover, the concept of “lignin to benzylamines” was demonstrated by a two‐step process. This work represents a first example of synthesis of benzylamines from lignin, thus providing a new opportunity for the sustainable synthesis of benzylamines from renewable biomass, and expanding the products pool of biomass conversion to meet future biorefinery demands.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Angewandte Chemie Vol. 133, No. 38 ( 2021-09-13), p. 20834-20839
    In: Angewandte Chemie, Wiley, Vol. 133, No. 38 ( 2021-09-13), p. 20834-20839
    Abstract: Catalytic conversion of lignin into heteroatom functionalized chemicals is of great importance to bring the biorefinery concept into reality. Herein, a new strategy was designed for direct transformation of lignin β‐O‐4 model compounds into benzylamines and phenols in moderate to excellent yields in the presence of organic amines. The transformation involves dehydrogenation of C α −OH, hydrogenolysis of the C β −O bond and reductive amination in the presence of Pd/C catalyst. Experimental data suggest that the dehydrogenation reaction proceeds over the other two reactions and secondary amines serve as both reducing agents and amine sources in the transformation. Moreover, the concept of “lignin to benzylamines” was demonstrated by a two‐step process. This work represents a first example of synthesis of benzylamines from lignin, thus providing a new opportunity for the sustainable synthesis of benzylamines from renewable biomass, and expanding the products pool of biomass conversion to meet future biorefinery demands.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Wiley ; 2018
    In:  Angewandte Chemie International Edition Vol. 57, No. 7 ( 2018-02-12), p. 1808-1812
    In: Angewandte Chemie International Edition, Wiley, Vol. 57, No. 7 ( 2018-02-12), p. 1808-1812
    Abstract: Tungsten carbide was employed as the catalyst in an atom‐economic and renewable synthesis of para ‐xylene with excellent selectivity and yield from 4‐methyl‐3‐cyclohexene‐1‐carbonylaldehyde (4‐MCHCA). This intermediate is the product of the Diels–Alder reaction between the two readily available bio‐based building blocks acrolein and isoprene. Our results suggest that 4‐MCHCA undergoes a novel dehydroaromatization–hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio‐based building blocks, thus potentially providing a petroleum‐independent solution to valuable aromatic compounds.
    Type of Medium: Online Resource
    ISSN: 1433-7851 , 1521-3773
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2011836-3
    detail.hit.zdb_id: 123227-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Angewandte Chemie, Wiley, Vol. 130, No. 7 ( 2018-02-12), p. 1826-1830
    Abstract: Tungsten carbide was employed as the catalyst in an atom‐economic and renewable synthesis of para ‐xylene with excellent selectivity and yield from 4‐methyl‐3‐cyclohexene‐1‐carbonylaldehyde (4‐MCHCA). This intermediate is the product of the Diels–Alder reaction between the two readily available bio‐based building blocks acrolein and isoprene. Our results suggest that 4‐MCHCA undergoes a novel dehydroaromatization–hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio‐based building blocks, thus potentially providing a petroleum‐independent solution to valuable aromatic compounds.
    Type of Medium: Online Resource
    ISSN: 0044-8249 , 1521-3757
    URL: Issue
    RVK:
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 505868-5
    detail.hit.zdb_id: 506609-8
    detail.hit.zdb_id: 514305-6
    detail.hit.zdb_id: 505872-7
    detail.hit.zdb_id: 1479266-7
    detail.hit.zdb_id: 505867-3
    detail.hit.zdb_id: 506259-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...