GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science of The Total Environment, Elsevier BV, Vol. 823 ( 2022-06), p. 153425-
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1498726-0
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Measurement Techniques, Copernicus GmbH, Vol. 13, No. 11 ( 2020-11-11), p. 6025-6051
    Abstract: Abstract. Mobile differential optical absorption spectroscopy (mobile DOAS) has become an important tool for the quantification of emission sources, including point sources (e.g., individual power plants) and area emitters (e.g., entire cities). In this study, we focused on the error budget of mobile DOAS measurements from point sources, and we also offered recommendations for the optimum settings of such measurements via a simulation with a modified Gaussian plume model. Following the analysis, we conclude that (1) the proper sampling resolution should be between 5 and 50 m. (2) When measuring far from the source, undetectable flux (measured slant column densities (SCDs) are under the detection limit) resulting from wind dispersion is the main error source. The threshold for the undetectable flux can be lowered by larger integration time. When measuring close to the source, low sampling frequency results in large errors, and wind field uncertainty becomes the main error source of SO2 flux (for NOx this error also increases, but other error sources dominate). More measurement times can lower the flux error that results from wind field uncertainty. The proper wind speed for mobile DOAS measurements is between 1 and 4 m s−1. (3) The remaining errors by [NOx] ∕ [NO2] ratio correction can be significant when measuring very close. To minimize the [NOx] ∕ [NO2] ratio correction error, we recommend minimum distances from the source, at which 5 % of the NO2 maximum reaction rate is reached and thus NOx steady state can be assumed. (4) Our study suggests that emission rates 〈 30 g s−1 for NOx and 〈 50 g s−1 for SO2 are not recommended for mobile DOAS measurements. Based on the model simulations, our study indicates that mobile DOAS measurements are a very well-suited tool to quantify point source emissions. The results of our sensitivity studies are important to make optimum use of such measurements.
    Type of Medium: Online Resource
    ISSN: 1867-8548
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2505596-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Geophysical Research: Atmospheres, American Geophysical Union (AGU), Vol. 126, No. 20 ( 2021-10-27)
    Abstract: H 2 O vertical profiles were measured using Multi‐AXis Differential Optical Absorption Spectroscopy (MAX‐DOAS) The correlation coefficient between the aerosol optical depth and the H 2 O VCD was higher during heavily polluted weather Heavy air pollution easily occurred in Qingdao due to a combination of high H 2 O concentration and low wind speeds
    Type of Medium: Online Resource
    ISSN: 2169-897X , 2169-8996
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2021
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 2969341-X
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Remote Sensing, MDPI AG, Vol. 12, No. 16 ( 2020-08-06), p. 2527-
    Abstract: NOX (NOX = NO + NO2) emissions measurements in Beijing are of great significance because they can aid in understanding how NOX pollution develops in mega-cities throughout China. However, NOX emissions in mega-cities are difficult to measure due to changes in wind patterns and moving sources on roads during measurement. To obtain good spatial coverage on different ring roads in Beijing over a short amount of time, two mobile differential optical absorption spectroscopy (DOAS) instruments were used to measure NOX emission flux from April 18th to 26th, 2018. In addition, a wind profile radar provided simultaneous wind field measurements for altitudes between 50 m and 1 km for each ring road measurement. We first determined NOX emission flux of different ring roads using wind field averages from measured wind data. The results showed that the NOX emission flux of Beijing’s fifth ring road, which represented the urban part, varied from (19.29 ± 5.26) × 1024 molec./s to (36.46 ± 12.86) × 1024 molec./s. On April 20th, NOX emission flux for the third ring was slightly higher than the fourth ring because the two ring roads were measured at different time periods. We then analyzed the NOX emission flux error budget and error sensitivity. The main error source was the wind field uncertainty. For some measurements, the main emission flux error source was either wind speed uncertainty or wind direction uncertainty, but not both. As Beijing’s NOX emissions came from road vehicle exhaust, we found that emission flux error had a more diverse sensitivity to wind direction uncertainty, which improved our knowledge on this topic. The NOX emission flux error sensitivity study indicated that more accurate measurements of the wind field are crucial for effective NOX emission flux measurements in Chinese mega-cities. Obtaining actual time and high resolved wind measurements is an advantage for mega-cities’ NOX emission flux measurements. The emission flux errors caused by wind direction and wind speed uncertainties were clearly distinguished. Other sensitivity studies indicated that NOX/NO2 ratio uncertainty dominated flux errors when the NOX/NO2 ratio uncertainty was 〉 0.4. Using two mobile-DOAS and wind profile radars to measure NOx emission flux improved the quality of the emission flux measuring results. This approach could be applied to many other mega-cities in China and in others countries.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science of The Total Environment, Elsevier BV, Vol. 782 ( 2021-08), p. 146865-
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1498726-0
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Remote Sensing, MDPI AG, Vol. 13, No. 5 ( 2021-02-27), p. 892-
    Abstract: This paper studied the method for converting the aerosol extinction to the mass concentration of particulate matter (PM) and obtained the spatio-temporal distribution and transportation of aerosol, nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) based on multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations in Dalian (38.85°N, 121.36°E), Qingdao (36.35°N, 120.69°E), and Shanghai (31.60°N, 121.80°E) from 2019 to 2020. The PM2.5 measured by the in situ instrument and the PM2.5 simulated by the conversion formula showed a good correlation. The correlation coefficients R were 0.93 (Dalian), 0.90 (Qingdao), and 0.88 (Shanghai). A regular seasonality of the three trace gases is found, but not for aerosols. Considerable amplitudes in the weekly cycles were determined for NO2 and aerosols, but not for SO2 and HCHO. The aerosol profiles were nearly Gaussian, and the shapes of the trace gas profiles were nearly exponential, except for SO2 in Shanghai and HCHO in Qingdao. PM2.5 presented the largest transport flux, followed by NO2 and SO2. The main transport flux was the output flux from inland to sea in spring and winter. The MAX-DOAS and the Copernicus Atmosphere Monitoring Service (CAMS) models’ results were compared. The overestimation of NO2 and SO2 by CAMS is due to its overestimation of near-surface gas volume mixing ratios.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Remote Sensing, MDPI AG, Vol. 13, No. 9 ( 2021-04-26), p. 1675-
    Abstract: Water vapor transport affects regional precipitation and climate change. The measurement of precipitable water (PW) and water vapor flux (WVF) is of great importance for the study of precipitation and water vapor transport. This study presented a new method of computing PW and estimating WVF using the water vapor vertical column density (VCD) and profile retrieved from multi-axis differential optical absorption spectroscopy (MAX-DOAS), combined with the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 wind profiles. We applied our method to MAX-DOAS observations in the coastal (Qingdao) and inland (Xi’an) cities of China from June 2019 to May 2020 and compared the results to the ERA5 reanalysis datasets. Good agreement with ERA5 datasets was found; the correlation coefficient (r) of the PW and the zonal and meridional WVFs were r ≥ 0.92, r = 0.77, and r ≥ 0.89, respectively. The comparison results showed the feasibility and reliability of estimating PW and WVF using MAX-DOAS. Then, we analyzed the seasonal and diurnal climatology of the PW and WVFs in Qingdao and Xi’an. The results indicated that the seasonal and diurnal variations of the PW in the two cities were similar. The zonal water vapor transport of the two cities mainly involved eastward transport, Qingdao’s meridional water vapor mainly involved southward transport, and that of Xi’an mainly involved northward transport. The WVFs of the two cities were higher in the afternoon than in the morning, which may be related to wind speed. The results also indicated that the WVF transmitting belts appeared at around 2 and 1.4 km above the surface in Qingdao and around 2.8, 2.6, 1.6, and 1.0 km above the surface in Xi’an. Before precipitation, the WVF transmitting belt moved from near the ground to a high level, reaching its maximum at about 2 km, and the PW and meridional vertically integrated WVF increased. Finally, the sources and transports of water vapor during continuous precipitation and torrential rain were analyzed according to a 24 h backward trajectory. The air mass from the southeast accounted for more than 84% during continuous precipitation in Xi’an, while the air mass from the ocean accounted for more than 75% during torrential rain in Qingdao and was accompanied by a high-level ocean jet stream. As an optical remote sensing instrument, MAX-DOAS has the advantages of high spatiotemporal resolution, low cost, and easy maintenance. The application of MAX-DOAS to meteorological remote sensing provides a better method for evaluating the PW and WVF.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Remote Sensing, MDPI AG, Vol. 13, No. 24 ( 2021-12-17), p. 5133-
    Abstract: Haze and dust pollution have a significant impact on human production, life, and health. In order to understand the pollution process, the study of these two pollution characteristics is important. In this study, a one-year observation was carried out at the Beijing Southern Suburb Observatory using the MAX-DOAS instrument, and the pollution characteristics of the typical haze and dust events were analyzed. First, the distribution of aerosol extinction (AE) and H2O concentrations in the two typical pollution events were studied. The results showed that the correlation coefficient (r) between H2O and AE at different heights decreased during dust processes and the correlation slope (|k|) increased, whereas r increased and |k| decreased during haze periods. The correlation slope increased during the dust episode due to low moisture content and increased O4 absorption caused by abundant suspended dry crustal particles, but decreased during the haze episode due to a significant increase of H2O absorption. Secondly, the gas vertical column density (VCD) indicated that aerosol optical depth (AOD) increased during dust pollution events in the afternoon, while the H2O VCD decreased; in haze pollution processes, both H2O VCD and AOD increased. There were significant differences in meteorological conditions during haze (wind speed (WD) was 〈 2 m/s, and relative humidity (RH) was 〉 60%) and dust pollution (WD was 〉 4 m/s, and RH was 〈 60%). Next, the vertical distribution characteristics of gases during the pollution periods were studied. The AE profile showed that haze pollution lasted for a long time and changed slowly, whereas the opposite was true for dust pollution. The pollutants (aerosols, NO2, SO2, and HCHO) and H2O were concentrated below 1 km during both these typical pollution processes, and haze pollution was associated with a strong temperature inversion around 1.0 km. Lastly, the water vapor transport fluxes showed that the water vapor transport from the eastern air mass had an auxiliary effect on haze pollution at the observation location. Our results are of significance for exploring the pollution process of tropospheric trace gases and the transport of water vapor in Beijing, and provide a basis for satellite and model verification.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...