GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Bentham Science Publishers Ltd. ; 2013
    In:  Current Pharmaceutical Design Vol. 19, No. 5 ( 2013-02-01), p. 841-863
    In: Current Pharmaceutical Design, Bentham Science Publishers Ltd., Vol. 19, No. 5 ( 2013-02-01), p. 841-863
    Type of Medium: Online Resource
    ISSN: 1381-6128
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2013
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Bentham Science Publishers Ltd. ; 2012
    In:  Current Pharmaceutical Design Vol. 19, No. 5 ( 2012-12-01), p. 841-863
    In: Current Pharmaceutical Design, Bentham Science Publishers Ltd., Vol. 19, No. 5 ( 2012-12-01), p. 841-863
    Type of Medium: Online Resource
    ISSN: 1381-6128
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2012
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Molecular Biology of the Cell, American Society for Cell Biology (ASCB), Vol. 22, No. 18 ( 2011-09-15), p. 3344-3354
    Abstract: The calcium-binding protein S100A4 is a central mediator of metastasis formation in colon cancer. S100A4 is a target gene of the Wnt/β-catenin pathway, which is constitutively active in the majority of colon cancers. In this study a high-throughput screen was performed to identify small-molecule compounds targeting the S100A4-promoter activity. In this screen calcimycin was identified as a transcriptional inhibitor of S100A4. In colon cancer cells calcimycin treatment reduced S100A4 mRNA and protein expression in a dose- and time-dependent manner. S100A4-induced cellular processes associated with metastasis formation, such as cell migration and invasion, were inhibited by calcimycin in an S100A4-specific manner. Calcimycin reduced β-catenin mRNA and protein levels despite the expression of Δ45-mutated β-catenin. Consequently, calcimycin inhibited Wnt/β-catenin pathway activity and the expression of prominent β-catenin target genes such as S100A4, cyclin D1, c-myc, and dickkopf-1. Finally, calcimycin treatment of human colon cancer cells inhibited metastasis formation in xenografted immunodeficient mice. Our results demonstrate that targeting the expression of S100A4 with calcimycin provides a functional strategy to restrict cell motility in colon cancer cells. Therefore calcimycin may be useful for studying S100A4 biology, and these studies may serve as a lead for the development of treatments for colon cancer metastasis.
    Type of Medium: Online Resource
    ISSN: 1059-1524 , 1939-4586
    Language: English
    Publisher: American Society for Cell Biology (ASCB)
    Publication Date: 2011
    detail.hit.zdb_id: 1474922-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 3588-3588
    Abstract: CSNK1A1 is a serine/threonine kinase involved in multiple cellular processes, including cell division, beta catenin signaling, and TP53 activation. Inhibition of CSNK1A1 has previously been validated as a therapeutic strategy in hematologic malignancy, and degradation of CSNK1A1 protein is the downstream mechanism of action for lenalidomide in 5q- myelodysplasia (Krönke, et al. Nature. 2015.). However, lenalidomide is inactive in most solid tumor models, thus limiting the study of CSNK1A1 inhibition in other contexts. Analysis of genetic loss-of-function data from the Cancer Dependency Map reveals multiple sensitive models, including lineage-specific enrichment in colorectal and gastric cancer. In an academic-industry collaboration, we a) developed first-in-class potent and selective ATP-competitive CSNK1A1 small molecule inhibitors with preclinical anti-cancer efficacy in vivo, and b) identified FAM83 expression as a key determinant of inhibitor sensitivity. We identified a tetrahydro-pyrrolopyridinone scaffold that was subsequently optimized to yield BAY-888 (CSNK1A1 IC50 4 nM @ 10 μM ATP; 63 nM @ 1 mM ATP) and BAY-204 (CSNK1A1 IC50 2 nM @ 10 μM ATP; 12 nM @ 1 mM ATP). The crystal structure of CSNK1A1 in complex with BAY-888 confirmed compound binding in the ATP binding pocket. Across the PRISM barcoded cell line panel of more than 500 solid tumor cell lines, inhibitors phenocopy the CSNK1A1 shRNA knockdown profile. To determine downstream mediators of CSNK1A1 inhibitor sensitivity, we performed co-IP mass spectrometry following CSNK1A1 pulldown and global phosphoproteomic assays following inhibitor treatment. We identified multiple interacting proteins that are also phosphorylation targets, including FAM83 family members. FAM83 was recently reported to mediate the subcellular localization of CSNK1A1 (Fulcher, et al. Sci Signal. 2018.). Excitingly, the baseline expression of FAM83B and FAM83H correlates with inhibitor and shRNA cell line sensitivity. Modulation of FAM83H expression altered CSNK1A1 localization and sensitivity to CSNK1A1 inhibition. BAY-888 and BAY-204 are orally bioavailable and were evaluated in multiple murine cell line xenograft models. We observed promising efficacy in DLBCL (TMD8) in vivo as well as in multiple FAM83-high solid tumor models, including colorectal (HCT116 and HT29), gastric (IM95), and urothelial cancer (KU19-19). We identified RPS6 phosphorylation as one of the PD biomarkers correlating with efficacy in vivo. In summary, CSNK1A1 is a promising target with anti-tumor efficacy and achievable therapeutic index in preclinical models of FAM83-high solid tumors. Citation Format: Steven M. Corsello, Huajia Zhang, Rajesha Rupaimoole, Volker K. Schulze, Clara Lemos, Kasia B. Handing, Douglas L. Orsi, Mrinal Shekhar, Ulrike Sack, Sven Christian, Wilhelm Bone, Ranad Humeidi, William Colgan, Stephanie Hoyt, Andrew Cherniack, Jens Schroder, Stefan Kaulfuss, Krzysztof Brzezinka, Oliver von Ahsen, Anne Mengel, Roman C. Hillig, Detlev Suelzle, Jeremie Mortier, Caitlin Harrington, Rohith Nagari, Justyna Wierzbinska, Derek Chiang, Georg Beckmann, Meagan Olive, Namrata Udeshi, Annie Apffel, Steven Carr, Philip Lienau, Christian Lechner, Ulf Boemer, Alisha Caliman, David McKinney, Florence Wagner, Dominik Mumberg, Marcus Bauser, Andrea Haegebarth, Knut Eis, Ashley Eheim, Todd R. Golub. Discovery of potent and selective CSNK1A1 inhibitors for solid tumor therapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 3588.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...