GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Oceans Vol. 100, No. C7 ( 1995-07-15), p. 13595-13601
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 100, No. C7 ( 1995-07-15), p. 13595-13601
    Abstract: Distributions of physical, biological, and chemical parameters in Florida Keys coastal waters seaward of the reef track were surveyed on September 9 to 13, 1993, as part of a coordinated multidisciplinary study of surface transport processes. A band of low‐salinity water was observed along the shoreward side of the Florida Current over the downstream extent of the survey from Miami to Key West. Biological and chemical indicators within the band, together with its large volume, satellite imagery, and a surface drifter trajectory suggested the recent Mississippi River flood as the source.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1995
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Elsevier BV ; 1981
    In:  Deep Sea Research Part A. Oceanographic Research Papers Vol. 28, No. 4 ( 1981-4), p. 347-378
    In: Deep Sea Research Part A. Oceanographic Research Papers, Elsevier BV, Vol. 28, No. 4 ( 1981-4), p. 347-378
    Type of Medium: Online Resource
    ISSN: 0198-0149
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1981
    detail.hit.zdb_id: 2280519-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1983
    In:  Journal of Geophysical Research: Oceans Vol. 88, No. C8 ( 1983-05-30), p. 4705-4718
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 88, No. C8 ( 1983-05-30), p. 4705-4718
    Abstract: Data from 2872 hydrographic stations have been used to determine the oceanographie climatology of the southeastern United States continental shelf waters. The data were sorted by each degree of latitude and by depth into three zones (0–20 m, 21–40 m, 41–60 m). Inner shelf water temperatures were similar to adjacent land air temperatures, while outer shelf temperatures were moderated by the Gulf Stream. Minimum and maximum water temperatures occurred in Georgia and South Carolina inner shelf water. Bottom temperatures were unusually low off Florida in the summer probably because of shelf break upwelling. Surface salinity was lowest adjacent to the rivers and reached minimums in the spring at the time of high runoff. An exception to this occurred in the fall, when strong southward winds apparently advected low salinity coastal water southward and offshore flow was restricted. Heat flux was calculated from changes in monthly mean depth‐averaged inner shelf water temperatures. Heating occurred from March through July with maximum rates of 103 W m −2 . Cooling occurred from October through February with maximum rates of −90 W m −2 . Bulk stratification was estimated from the difference in near‐surface and near‐bottom monthly mean density. In the spring, stratification increases in inner shelf areas because of decreasing winds and increasing heat flux and runoff. By summer the whole shelf is highly stratified reflecting the contrast between high surface water temperatures and cooler bottom waters. Highest bulk stratification is found over the outer shelf. Stratification decreased with the approach offall with the associated cooling and high winds. Mean flow at midshelf was northward and appears to be produced by an along‐shelf slope of sea level of oceanic origin. Data are available with entire article on microfiche. Order from the American Geophysical Union, 2000 Florida Avenue, N.W. Washington, D.C. 20009. Document C82‐002; $2.50. Payment must accompany order.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1983
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1991
    In:  Journal of Geophysical Research: Oceans Vol. 96, No. C12 ( 1991-12-15), p. 22191-22205
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 96, No. C12 ( 1991-12-15), p. 22191-22205
    Abstract: Weekly period meanders and eddies are persistent features of Gulf Stream frontal dynamics from Miami, Florida, to Cape Hatteras, North Carolina. Satellite imagery and moored current and temperature records reveal a spatial pattern of preferred regions for growth and decay of frontal disturbances. Growth regions occur off Miami, Cape Canaveral, and Cape Fear due to baroclinic instability, and decay occurs in the confines of the Straits of Florida between Miami and Palm Beach, between 30° and 32°N where the stream approaches the topographic feature known as the Charleston bump and between 33°N and Cape Hatteras. Eddy decay regions are associated with elongation of frontal features, offshore transport of momentum and heat, and onshore transport of nutrients. Onshore transport of new nitrogen from the nutrient‐bearing strata beneath the Gulf Stream indicates that frontal eddies serve as a “nutrient pump” for the shelf. New nitrogen flux to the shelf due to Gulf Stream input could support new production of 7.4×10 12 g C yr −1 or about 8 million tons carbon per year if all nitrate were utilized. Calculations indicate that approximately 70% of this potential new production is realized, yielding an annual new production for the outer shelf of 4.3×10 12 g C.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1991
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Oceans Vol. 100, No. C5 ( 1995-05-15), p. 8561-8569
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 100, No. C5 ( 1995-05-15), p. 8561-8569
    Abstract: Currents and temperatures were measured using Pegasus current profilers across Northwest Providence and Santaren Channels and across the Florida Current off Cay Sal Bank during four cruises from November 1990 to September 1991. On average, Northwest Providence (1.2 Sv) and Santaren (1.8 Sv) contribute about 3 Sv to the total Florida Current transport farther north (e.g., 27°N). Partitioning of transport into temperature layers shows that about one‐half of this transport is of “18°C” water (17°C–19.5°C); this can account for all of the “excess” 18°C water observed in previous experiments. This excess is thought to be injected into the 18°C layer in its region of formation in the northwestern North Atlantic Ocean. Due to its large thickness, potential vorticities in this layer in its area of formation are very low. In our data, lowest potential vorticities in this layer are found on the northern end of Northwest Providence Channel and are comparable to those observed on the eastern side of the Florida Current at 27°N. On average a low‐potential‐vorticity 18°C layer was not found in the Florida Current off Cay Sal Bank.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1995
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 1987
    In:  Progress in Oceanography Vol. 19, No. 3-4 ( 1987-1), p. 231-266
    In: Progress in Oceanography, Elsevier BV, Vol. 19, No. 3-4 ( 1987-1), p. 231-266
    Type of Medium: Online Resource
    ISSN: 0079-6611
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1987
    detail.hit.zdb_id: 1497436-8
    detail.hit.zdb_id: 4062-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 1987
    In:  Progress in Oceanography Vol. 19, No. 3-4 ( 1987-1), p. 437-441
    In: Progress in Oceanography, Elsevier BV, Vol. 19, No. 3-4 ( 1987-1), p. 437-441
    Type of Medium: Online Resource
    ISSN: 0079-6611
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1987
    detail.hit.zdb_id: 1497436-8
    detail.hit.zdb_id: 4062-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 1981
    In:  Limnology and Oceanography Vol. 26, No. 6 ( 1981-11), p. 1103-1110
    In: Limnology and Oceanography, Wiley, Vol. 26, No. 6 ( 1981-11), p. 1103-1110
    Type of Medium: Online Resource
    ISSN: 0024-3590
    Language: English
    Publisher: Wiley
    Publication Date: 1981
    detail.hit.zdb_id: 2033191-5
    detail.hit.zdb_id: 412737-7
    SSG: 12
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1989
    In:  Journal of Geophysical Research: Oceans Vol. 94, No. C8 ( 1989-08-15), p. 10699-10713
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 94, No. C8 ( 1989-08-15), p. 10699-10713
    Abstract: Continental shelf waters are particularly responsive to winter storm events mainly because of their shallow depths. Those of the southeastern United States (the South Atlantic Bight (SAB)) are especially responsive because they are broad and shallow. Also, the Gulf Stream serves as a continual source of warm water at the outer boundary. Thus the SAB receives strong meteorological (wind stress and heat loss) and oceanographic (advective) forcing. During the Genesis of Atlantic Lows Experiment (GALE) the response of shelf waters to winter storm events and Gulf Stream forcing was observed. The mean conditions showed a mixed water column with areas of stratification near the coast and at the shelf break. The nearshore area was stratified only during weak offshore winds, and the shelf break area was stratified during southward winds with accompanying onshore Ekman flow. On the inner shelf, advective buoyancy flux was similar in value to heat flux buoyancy and the buoyancy equivalent of wind mixing. Over the shelf break the advective buoyancy flux was 4 times the other forms of buoyancy flux and controlled the observed potential energy variability. A simple box model heat budget used to separate the effect of Gulf Stream eddies and meanders, and Ekman flow and air‐sea heat exchange on the shelf heat content showed that the observed heat content variability was caused by intrusion of Gulf Stream water. The intrusions may be caused either by onshore Ekman flow during southward winds or Gulf Stream meander events.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1989
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 1987
    In:  Progress in Oceanography Vol. 19, No. 3-4 ( 1987-1), p. 221-230
    In: Progress in Oceanography, Elsevier BV, Vol. 19, No. 3-4 ( 1987-1), p. 221-230
    Type of Medium: Online Resource
    ISSN: 0079-6611
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1987
    detail.hit.zdb_id: 1497436-8
    detail.hit.zdb_id: 4062-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...