GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Leukemia, Springer Science and Business Media LLC, Vol. 37, No. 4 ( 2023-04), p. 807-819
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 4379-4379
    Abstract: Allogeneic hematopoietic cell transplantation (HCT) from HLA-matched sibling (MS) or unrelated donors (MU) is a well-established treatment for patients with intermediate/high-risk acute myelogenous leukemia (AML) in remission. When HLA-matched donors are not available, however, use of haploidentical family (HF) donors for HCT remains controversial. Therefore, we performed a prospective study, where patients with AML in complete remission (CR) underwent allogeneic HCT according to the donor priority of MS, MU, or HF donors. Conditioning regimen for MS-HCT was busulfan (3.2 mg/kg • 4 days)-cyclophosphamide (60 mg/kg • 2 days) or, for patients 〉 55 years or with co-morbidity, busulfan (3.2 mg/kg • 2 days)-fludarabine (30 mg/m2 • 6 days)-Thymoglobulin (1.5 mg/kg • 3 days). Patients undergoing MU- or HF-HCT received busulfan (3.2 mg/kg • 2 days)-fludarabine (30 mg/m2 • 6 days)-Thymoglobulin (3 mg/kg • 3 days) (Lee K-H et al; Blood 2011;118:2609-2617; Am J Hematol 2011;86:399-405). Ex-vivo T cell depletion was not performed. GVHD prophylaxis included cyclosporine plus a short course of methotrexate. Between January 2010 and December 2014, 244 patients enrolled. Of those, 16 patients were excluded from the analysis (12 patients relapsed before HCT; 3 with major protocol violation; and 1 with incomplete data). Of remaining 228 patients, 81 underwent HCT from MS donors, 90 from MU donors, and 57 from HF donors. The donors for MU-HCT were younger and more male-dominant than those for MS- or HF-HCT. The characteristics of patients and their donors were summarized in Table 1. Table 1. MS-HCT (n=81) UD-HCT (n=90) HF-HCT (n=57) P* Median age, yr (range) 48 (19-66) 43 (16-66) 46 (17-69) Sex, male/female 37/44 44/46 29/28 0.824 CR1/CR2 76/5 82/8 47/10 0.098 Chromosome risk,low**/intermediate/high/high-monosomal 6/57/10/5 4/65/16/3 2/40/7/5 0.751 Donor median age, yr (range) 45 (18-63) 28 (20-45) 29 (15-58) Donor age, yrup to 2526-45over 45 44136 29610 19326 0.000 Donor sex, male/female 46/35 76/14 36/21 0.000 Donor relation, parents/sibling/offspring 7/24/26 HLA allele mismatch/8 (GVH direction), 0/1/2/3/4 81/0/0/0 51/26/10/2/1 0/0/5/22/30 0.000 Graft, bone marrow/peripheral blood 28/53 0/90 0/57 0.000 Median nucleated cell count, •108/kg (range) 8.0 (0.9-19.0) 10.8 (4.1-31.4) 10.8 (5.1-19.3) Median CD34+ count, •106/kg (range) 4.9 (0.8-18.0) 8.0 (1.4-26.2) 6.4 (2.4-25.7) *by Chi-square test; **Twelve patients with AML of low-risk chromosomal abnormality included 6 patients in CR2, 3 with c-kit mutation, and 3 with persistent aml1-eto or cbf beta-myh11 after induction chemotherapy. The median follow-up duration of 164 survivors in the study was 34.7 months (range, 3.7-63.6) after HCT. The donor-group effect on the HCT outcomes was described in Table 2. Patients who underwent MS-HCT showed slightly slower neutrophil engraftment and higher incidence of chronic GVHD. Otherwise, in terms of disease recurrence, NRM, graft failure, EFS, and OS, there was no significant difference according to the donor-type. For AML recurrence, cytogenetic risk was an independent prognostic factors (P =0.003; hazard ratio of low-risk to; intermediate-risk, 1.42; high-risk, 2.53; high-risk with monosomal karyotype, 5.47). Table 1. MS-HCT (n=81) UD-HCT (n=90) HF-HCT (n=57) P Cumulative incidence ( 95% confidence interval)* AML recurrence 29% (19-40%) 26% (17-36%) 35% (20-51%) 0.785 Non-relapse mortality (NRM) 8% (3-16%) 7% (2%-16%) 11% (4-21%) 0.435 Graft failure 1% (0.1-6%) 6% (2-12%) 5% (1-13%) 0.293 ANC 〉 500/uL median days (range) 100% 13 (9-20) 99%12 (10-45) 98% 12 (6-22) 0.049 Platelet 〉 20,000/uL median days (range) 99% (86-100%) 14 (0-83) 97% (88-99%) 13 (0-77) 96% (83-99%) 14 (0-106) 0.352 Grades 2-4 acute graft-versus-host disease (GVHD) 12% (6-21%) 13% (7-21%) 23% (13-34%) 0.176 Moderate to severe chronic GVHD 39% (28-50%) 22% (13-30%) 23% (13-35%) 0.0452 4-year survival** Event-free (EFS) 63% 69% 54% 0.381 Overall (OS) 62% 74% 64% 0.077 *compared by Gray's method; **compared by log-rank test Our study showed that, despite heterogeneity of baseline donor characteristics (age and sex), conditioning regimen, and graft source (bone marrow vs. peripheral blood), overall post-transplant outcomes were similar among recipients from MS-, MU-, and HF-donors. Therefore, for patients with AML in CR but without an HLA-matched donor available, HCT from a haploidentical family member may be considered. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biology of Blood and Marrow Transplantation, Elsevier BV, Vol. 22, No. 11 ( 2016-11), p. 2065-2076
    Type of Medium: Online Resource
    ISSN: 1083-8791
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 3056525-X
    detail.hit.zdb_id: 2057605-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Biology of Blood and Marrow Transplantation, Elsevier BV, Vol. 21, No. 2 ( 2015-02), p. 342-349
    Type of Medium: Online Resource
    ISSN: 1083-8791
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 3056525-X
    detail.hit.zdb_id: 2057605-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Biology of Blood and Marrow Transplantation, Elsevier BV, Vol. 20, No. 5 ( 2014-05), p. 696-704
    Type of Medium: Online Resource
    ISSN: 1083-8791
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 3056525-X
    detail.hit.zdb_id: 2057605-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 1707-1707
    Abstract: Abstract 1707 Core binding factor AML including t(8;21) and inv(16) have been associated with a relatively favorable prognosis compared with patients with normal or adverse karyotypes, and treated similarly. However, both t(8;21) and inv(16) AML seem to differ with respect to several biologic features and several reports demonstrated inferior outcome of t(8;21) compared with inv(16). Advanced age, higher WBC or granulocytic count, as well as CD56 expression or granulocytic sarcoma have been reported as poor prognostic factors in t(8;21) patients. Higher bone marrow (BM) blasts, lower platelets, and non-white race in t(8;21) AML adversely affected the probability to achieve CR. The KIT mutation is associated with poor prognosis in AML1-ETO-positive AML. Five-year survival rate was only around 40% in patients with t(8;21) having poor prognostic factors. Several chemotherapeutic strategies have been reported, among which high-dose cytarabine (HDAC) is generally the most effective option for successful postremission therapy. Furthermore, none of the randomized studies disclosed an advantage of allogeneic SCT (alloSCT) in this group of patients, given the relatively high treatment-related death (TRD) rate. Patients with t(8;21) AML with unfavorable prognosis may benefit from intensive postremission therapy such as early hematopoietic SCT. We conducted a retrospective study to investigate whether postremission therapies impact on survival according to prognostic factors in 132 AML patients with t(8;21) achieving first CR. Univariate analyses of prognostic factors for survival were performed in the patients with t(8;21), as well as more limited population of chemotherapy (CTx) group according to postremission therapies. The BM cellularity was a single most important independent prognostic factor on survival when using BM cellularity cutoffs as 90%. The 5-year overall survival (OS) in patients with t(8;21) and CTx group were significantly lower at 49.7% and 44.3% in patients with ≥ 90% BM cellularity, compared with 81.4% and 81.9% in those with 〈 90% BM cellularity, respectively (P = 0.001 and 0.027, respectively). The only other prognostic factor that influenced OS in CTx group was WBC count with cutoffs as 9.1 × 109/L. High WBC count was trend towards poor OS in CTx group (P = 0.067). In multivariate analysis, BM cellularity appeared to be the only independent prognostic factor for OS in either AML patients with t(8;21) (P = 0.002) or CTx group (P = 0.055). Interestingly, we found positive correlation between BM cellularity and WBC count (P = 0.013), peripheral blood (PB) blast percentage (P = 0.001) and serum LDH level (P = 0.017) but not hemoglobin level and BM blast percentage in a linear regression model. And also, we confirmed negative correlation between BM cellularity and platelet count (P = 0.009). It is speculated that BM cellularity represents on poor prognostic factors including WBC and platelet counts, and PB blast percentage in patients with t(8;21). By combining dichotomized WBC count and BM cellularity in a univariate analysis for OS in CTx group, three risk groups could be established: low risk group, WBC count less than 9.1 × 109/L and BM cellularity less than 90%; intermediate risk group, WBC count ≥ 9.1 × 109/L and BM cellularity less than 90%; high risk group, BM cellularity ≥ 90%. In CTx group, 5-year OS was 81.9% in low risk group, 64.8% in intermediate group, and 32.1% in high risk group (P = 0.041). In alloSCT group, 5-year OS was 94.1% in low risk group, 29.1% in intermediate risk group, and 77.8% in high risk group (P = 0.042). In low risk group, 5-year OS was 81.9% in CTx group, 65.6% in autologous SCT (autoSCT) group, 94.1% in alloSCT group. In intermediate risk group, 5-year OS was 64.8% in CTx group, 29.1% in alloSCT group. In high risk group, 5-year OS was 32.1% in CTx group, 52.5% in autoSCT group, and 77.8% in alloSCT group. We found that BM cellularity was the most powerful independent prognostic factor in AML patients with t(8;21). The newly proposed model using BM cellularity and WBC count demonstrated a simple and valid measurement as main prognostic factor. We suggest a risk-adapted postremissin strategies based on this prognostic model for AML with t(8;21) such as low and intermediate risk patients receiving three cycles or more than three cycles of HDAC CTx and high risk patients undergoing SCT in first CR as postremission therapy. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3826-3826
    Abstract: Background: The JL1 antigen is a novel epitope of CD43, a cell surface glycoprotein of mucin family. JL1 is a differentiation antigen expressed on stage II double positive (CD4+CD8+) human cortical thymocytes. The antigen is not expressed on mature peripheral blood cells or other normal tissues. The anti-JL1 monoclonal antibody binds to human leukemia MOLT-4 cells with 5,100-9,600 binding sites per cell. Preclinical studies have shown the cytotoxic effects of anti-JL1-based immunotoxin against JL1-positive leukemic cells, sparing most normal tissues other than thymocytes and some bone marrow mononuclear cells. Phase I clinical trial of new anti-leukemic agent with an anti-JL1 antibody (Leukotuximab; DiNonA, Korea) is now underway. In this study, we prospectively investigated the JL1 expression in patients with acute leukemia and myelodysplastic syndrome (MDS). Patients & methods: Flow cytometric analysis for the JL1 expression on leukemic blasts was performed using a FACSCanto II (Becton-Dickinson, Sunnyvale, CA, USA). The percent expression of JL1 antigen among leukemic blasts was recorded. Positive JL1 expression was defined if 20% or more leukemic blasts expressed the antigen. Association of JL1 expression with clinical, pathologic, and genetic characteristics was analyzed. Influence of JL1 expression on clinical outcomes of patients was also explored. Results: Between March 2014 and June 2015, a total of 245 adult patients with acute myeloid leukemia (AML, n=170), acute lymphoblastic leukemia (ALL, n=52), and MDS (n=23) were enrolled in this study. Positive JL1 expression was observed in 96 (57.1%) patients with AML, 28 (51.9%) with ALL, and 5 (21.7%) with MDS (P =0.006), while three normal controls showed negative JL1 antigen expression. Interestingly, JL1 expression was positive in all 14 patients with AML M3 with a median expression of 94.3% (range, 60.3-97.8%). In contrast, only 13 (39.4%) of 33 patients with AML with myelodysplasia-related changes (MRC) had positive JL1 expression. In AML patients, positive JL1 expression was significantly associated with CD34- (P =0.003), HLA-DR- (P =0.019), PML-RARA + (P =0.001), FLT3-ITD + (P =0.026), mutated NPM1 (P =0.003), and complex karyotype (3 or more clonal chromosomal abnormalities) (P =0.020). Cytarabine plus anthracycline based chemotherapy was given to 117 patients with AML, and the complete remission (CR) rate was significantly different between 63 JL1 expression positive patients and 54 negative patients (84.1% vs. 59.3%, P =0.003). Positivity of JL1 expression was not significantly associated with overall survival in all patients with AML (median survival, JL1 positive vs. negative, 20.6 vs. 18.2 months, P =0.489). In ALL patients, positive JL1 expression was significantly associated with CD13- (P =0.032) and the CR rate was not significantly different by JL1 expression. JL1 expression was measured twice or more in 85 patients during their clinical courses and positivity of JL1 expression was not changed in 61 (71.8%) (P =0.307). Five MDS patients progressed to AML and JL1 expression was changed in only one patient (JL1 positive to JL1 negative). Conclusion: JL1 was expressed in around 50% of patients with AML or ALL while less frequent expression of JL1 was observed in MDS and AML with MRC. JL1 expression was significantly associated with some immunophenotypic and genetic features, especially PML-RARA +. JL1 expression was significantly associated with the CR rate of AML patients. Expression of JL1 seems to be stable during clinical courses. Our data suggest that immunotherapeutic approach targeting JL1 antigen may be feasible in significant proportion of patients with acute leukemia and MDS. Disclosures Kim: Dinona Institute, Dinona Inc.: Employment. Yoon:Dinona Institute, Dinona Inc.: Employment. Jung:Dinona Institute, Dinona Inc.: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: International Journal of Hematology, Springer Science and Business Media LLC, Vol. 102, No. 3 ( 2015-9), p. 357-363
    Type of Medium: Online Resource
    ISSN: 0925-5710 , 1865-3774
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 2028991-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Medical Mycology, Oxford University Press (OUP), Vol. 56, No. 6 ( 2018-08-01), p. 782-786
    Type of Medium: Online Resource
    ISSN: 1369-3786 , 1460-2709
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2020733-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 5415-5415
    Abstract: Allogeneic HCT offers the best chance for long-term survival in patients with acute leukemia after first relapse. A difficult clinical decision for a patient suffering leukemic relapse who has a histocompatible donor is whether to attempt re-induction therapy or proceed directly to HCT. Sixty-five patients with acute leukemia in first relapse or second remission were treated with allogeneic HCT at 3 institutes in Seoul, Korea between Jan 1995 and Sep 2004. We analyzed their post-transplant outcomes and investigated the role of salvage chemotherapy aimed at re-induction of remission before allogeneic HCT. Forty patients received hematopoietic cell graft from a sibling donor, 21 from an unrelated donor, and 2 from a haplo-identical family donor, and 2 received cord blood. Thirteen patients received TBI-based conditioning regimen and 10 received reduced-intensity conditioning regimen. There occurred 34 relapses with 51.3% of 5-y cumulative incidence of relapse (CIR) and there were 22 non-relapse deaths with 34.7% of non-relapse mortality. Probabilities of overall survival and disease-free survival were 20.6% and 14.0% at 5-y, respectively. Multivariate analysis by Gray method for CIR revealed that patients with unfavorable cytogenetics (Philadelphia chromosome-positive or complex karyotype) and those not in remission at the time of HCT had significantly higher CIR (P=0.023 and P=0.031, respectively). Fourteen patients underwent allogeneic HCT after first relapse without salvage chemotherapy aimed at re-induction of remission (“untreated relapse”), 15 patients failed in attempts aimed at re-induction of remission before HCT (“refractory relapse”), and 36 patients attained second remission with salvage chemotherapy before HCT (“second remission”). 5-y CIR for “untreated relapse” (57.1%) was higher than that for “second remission” (42.3%), but lower than that for “refractory relapse” (66.7%). Among patients transplanted in relapse, those with BM blasts ≤ 30% seemed to have lower 5-y CIR than patients in florid relapse (BM blasts & gt; 30%) (57.7% vs. 70.6%). These results do not support the role of salvage chemotherapy aimed at re-induction of remission before allogeneic HCT in patients with acute leukemia after first relapse. At least the patients with early relapse do not appear to receive benefit from salvage chemotherapy before HCT.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...