GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (5)
  • Lee, Jeong-Won  (5)
  • 1
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 16, No. 9 ( 2010-05-01), p. 2562-2570
    Abstract: Purpose: EphA2 overexpression is frequently observed in endometrial cancers and is predictive of poor clinical outcome. Here, we use an antibody drug conjugate (MEDI-547) composed of a fully human monoclonal antibody against both human and murine EphA2 (1C1) and the tubulin polymerization inhibitor monomethylauristatin F. Experimental Design: EphA2 expression was examined in endometrial cancer cell lines by Western blot. Specificity of MEDI-547 was examined by antibody degradation and internalization assays. Viability and apoptosis were investigated in endometrial cancer cell lines and orthotopic tumor models. Results: EphA2 was expressed in the Hec-1A and Ishikawa cells but was absent in the SPEC-2 cells. Antibody degradation and internalization assays showed that the antibody drug conjugate decreased EphA2 protein levels and was internalized in EphA2-positive cells (Hec-1A and Ishikawa). Moreover, in vitro cytotoxicity and apoptosis assays showed that the antibody drug conjugate decreased viability and increased apoptosis of Hec-1A and Ishikawa cells. In vivo therapy experiments in mouse orthotopic models with this antibody drug conjugate resulted in 86% to 88% growth inhibition (P & lt; 0.001) in the orthotopic Hec-1A and Ishikawa models compared with controls. Moreover, the mice treated with this antibody drug conjugate had a lower incidence of distant metastasis compared with controls. The antitumor effects of the therapy were related to decreased proliferation and increased apoptosis of tumor and associated endothelial cells. Conclusions: The preclinical data for endometrial cancer treatment using MEDI-547 show substantial antitumor activity. Clin Cancer Res; 16(9); 2562–70. ©2010 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 15 ( 2021-08-01), p. 4452-4452
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 17, No. 7 ( 2011-04-01), p. 1713-1721
    Abstract: Purpose: Src is an attractive target because it is overexpressed in a number of malignancies, including ovarian cancer. However, the effect of Src silencing on other Src family kinases (SFKs) is not known. We hypothesized that other SFK members could compensate for the lack of Src activity. Experimental Design: Cell viability after either Src or Fgr silencing was examined in ovarian cancer cell lines by MTT assay. Expression of SFKs after Src silencing in ovarian cancer cells was examined by real-time reverse transcriptase (RT)-PCR. Therapeutic effect of in vivo Src and/or Fgr silencing was examined using siRNA incorporated into chitosan nanoparticles (siRNA/CH-NP). Microvessel density, cell proliferation, and apoptosis markers were determined by immunohistochemical staining in ovarian tumor tissues. Results: Src silencing enhanced cytotoxicity of docetaxel in both SKOV3ip1 and HeyA8 cells. In addition, Src silencing using siRNA/CH-NP in combination with docetaxel resulted in significant inhibition of tumor growth compared with control siRNA/CH-NP (81.8% reduction in SKOV3ip1, P = 0.017; 84.3% reduction in HeyA8, P & lt; 0.005). These effects were mediated by decreased tumor cell proliferation and angiogenesis, and increased tumor cell apoptosis. Next, we assessed the effects of Src silencing on other SFK members in ovarian cancer cell lines. Src silencing resulted in significantly increased Fgr levels. Dual Src and Fgr silencing in vitro resulted in increased apoptosis that was mediated by increased caspase and AKT activity. In addition, dual silencing of Src and Fgr in vivo using siRNA/CH-NP resulted in the greatest reduction in tumor growth compared with silencing of either Src or Fgr alone in the HeyA8 model (68.8%, P & lt; 0.05). Conclusions: This study demonstrates that, in addition to Src, Fgr plays a biologically significant role in ovarian cancer growth and might represent an important target. Clin Cancer Res; 17(7); 1713–21. ©2011 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 6371-6371
    Abstract: Purpose: Several cell-free DNA (cf-DNA) features, such as genome-wide coverage, fragment size, and fragment end motif frequency, have shown their potentials for cancer detection. In this study, we developed two independent models, GC (gross chromatin), and FEMS (fragment end motif frequency and size). Each model uses images generated from genome-wide normalized sequencing coverage and cf-DNA fragment end motif frequencies according to the different cf-DNA size profiles. Then we integrated them into a single ensemble model to improve cancer detection and multi-cancer type classification accuracy. Methods: Low depth cf-WGS data was generated from 1,396 patients (stage I: 14.9%, stage II: 35.6%, stage III: 24.9%, stage IV: 24.2%, unknown: 0.4%) with breast (n=702), liver (n=213), esophageal (n=155), ovarian (n=151), pancreatic (n=85), lung (n=53), head and neck (n=16), biliary tract (n=15), and colon cancer (n=6) and 417 healthy individuals. Samples were randomly split into training, validation, and test set stratifying cancer type and stages. Cancer types with a small number of samples ( & lt;20) were excluded for multi-cancer type classification. Each model was trained using a convolutional neural network, then integrated into a single ensemble model by averaging the predicted probabilities calculated from each model. Results: For cancer detection, the ensemble model achieved sensitivities of 85.2% [95% confidence interval (CI): 71.8% to 94.5%], 74.9% (CI: 68.0% to 88.0%), 73.2% (CI: 66.7% to 85.9%) at a specificity of 95%, 98% and 99% and the AUC value of 0.97(CI: 0.95-0.99) in the test dataset. By the cancer stages, sensitivity was 62.8% (CI: 48.8% to 83.7%) in stage I, 66.3% (CI: 57.7% to 82.7%) in stage II, 85.9% (CI: 77.5% to 94.4%) in stage III, and 76.1% (CI: 63.4% to 87.3%) in stage IV at 99% specificity. For multi-cancer classification, the overall accuracy of 85.1% (CI: 80.4% to 89.3%) was achieved including 6 cancer types. Conclusions: Highly sensitive and accurate deep learning model for cancer detection and multi-cancer classification was generated by combining different types of cf-DNA features. This result provides the opportunity for general population multi-cancer screening using various cf-DNA features. Citation Format: Tae-Rim Lee, Jin Mo Ahn, Joo Hyuk Sohn, Sook Ryun Park, Min Hwan Kim, Gun Min Kim, Ki-Byung Song, Eunsung Jun, Dongryul Oh, Jeong-Won Lee, Joseph J Noh, Young Sik Park, Sun-Young Kong, Sang Myung Woo, Bo Hyun Kim, Eui Kyu Chie, Hyun-Cheol Kang, Youn Jin Choi, Ki-Won Song, Jeong-Sik Byeon, Junnam Lee, Dasom Kim, Chang-Seok Ki, Eunhae Cho. Deep learning algorithm for multi-cancer detection and classification using cf-WGS [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6371.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 20, No. 3 ( 2014-02-01), p. 565-575
    Abstract: Purpose: Bromodomain-containing protein 7 (BRD7), which is a subunit of SWI/SNF complex, has been recently suggested as a novel tumor suppressor in several cancers. In this study, we investigated the tumor suppressive effect of BRD7 in epithelial ovarian cancer. Experimental Design: We analyzed the expression of BRD7 in human ovarian tissues with real-time PCR. To investigate the functional role of BRD7, we transfected ovarian cancer cells (A2780 and SKOV3) with BRD7 plasmid and checked the cell viability, apoptosis, and invasion. The activities of BRD7 in the signaling pathways associated with carcinogenesis were also tested. In addition, we used the orthotopic mouse model for ovarian cancer to evaluate tumor growth-inhibiting effect by administration of BRD7 plasmid. Results: The BRD7 expression was downregulated in the ovarian cancer tissues compared with normal (P & lt; 0.05), high-grade serous cancer exhibited significantly decreased expression of BRD7 compared with low-grade (P & lt; 0.01) serous cancer. Transfection of BRD7 plasmid to A2780 (p53-wild) or SKOV3 (p53-null) ovarian cancer cells showed the tumor suppressive effects assessed by cell viability, apoptosis, and invasion assay and especially significantly decreased tumor weight in orthotopic mouse model (A2780). Moreover, we found that tumor suppressive effects of BRD7 are independent to the presence of p53 activity in ovarian cancer cells. BRD7 negatively regulated β-catenin pathway, resulting in decreased its accumulation in the nucleus. Conclusions: These results suggested that BRD7 acts as a tumor suppressor in epithelial ovarian cancers independently of p53 activity, via negative regulation of β-catenin pathway. Clin Cancer Res; 20(3); 565–75. ©2013 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2014
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...