GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Faraday Discussions, Royal Society of Chemistry (RSC), Vol. 189 ( 2016), p. 105-120
    Type of Medium: Online Resource
    ISSN: 1359-6640 , 1364-5498
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2016
    detail.hit.zdb_id: 1472891-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Copernicus GmbH ; 2017
    In:  Atmospheric Chemistry and Physics Vol. 17, No. 6 ( 2017-03-27), p. 4081-4092
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 17, No. 6 ( 2017-03-27), p. 4081-4092
    Abstract: Abstract. We present 2 years of NOx observations from the Cape Verde Atmospheric Observatory located in the tropical Atlantic boundary layer. We find that NOx mixing ratios peak around solar noon (at 20–30 pptV depending on season), which is counter to box model simulations that show a midday minimum due to OH conversion of NO2 to HNO3. Production of NOx via decomposition of organic nitrogen species and the photolysis of HNO3 appear insufficient to provide the observed noontime maximum. A rapid photolysis of nitrate aerosol to produce HONO and NO2, however, is able to simulate the observed diurnal cycle. This would make it the dominant source of NOx at this remote marine boundary layer site, overturning the previous paradigm according to which the transport of organic nitrogen species, such as PAN, is the dominant source. We show that observed mixing ratios (November–December 2015) of HONO at Cape Verde (∼ 3.5 pptV peak at solar noon) are consistent with this route for NOx production. Reactions between the nitrate radical and halogen hydroxides which have been postulated in the literature appear to improve the box model simulation of NOx. This rapid conversion of aerosol phase nitrate to NOx changes our perspective of the NOx cycling chemistry in the tropical marine boundary layer, suggesting a more chemically complex environment than previously thought.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2017
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 24 ( 2022-12-15), p. 15747-15765
    Abstract: Abstract. The photostationary state (PSS) equilibrium between NO and NO2 is reached within minutes in the atmosphere and can be described by the PSS parameter, φ. Deviations from expected values of φ have previously been used to infer missing oxidants in diverse locations, from highly polluted regions to the extremely clean conditions observed in the remote marine boundary layer (MBL), and have been interpreted as missing understanding of fundamental photochemistry. Here, contrary to these previous observations, we observe good agreement between PSS-derived NO2 ([NO2]PSS ext.), calculated from measured NO, O3, and jNO2 and photochemical box model predictions of peroxy radicals (RO2 and HO2), and observed NO2 ([NO2]Obs.) in extremely clean air containing low levels of CO (〈90 ppbV) and VOCs (volatile organic compounds). However, in clean air containing small amounts of aged pollution (CO 〉 100 ppbV), we observed higher levels of NO2 than inferred from the PSS, with [NO2]Obs. / [NO2]PSS ext. of 1.12–1.68 (25th–75th percentile), implying underestimation of RO2 radicals by 18.5–104 pptV. Potential NO2 measurement artefacts have to be carefully considered when comparing PSS-derived NO2 to observed NO2, but we show that the NO2 artefact required to explain the deviation would have to be ∼ 4 times greater than the maximum calculated from known interferences. If the additional RO2 radicals inferred from the PSS convert NO to NO2 with a reaction rate equivalent to that of methyl peroxy radicals (CH3O2), then the calculated net ozone production rate (NOPR, ppbV h−1) including these additional oxidants is similar to the average change in O3 observed, within estimated uncertainties, once halogen oxide chemistry is accounted for. This implies that such additional peroxy radicals cannot be excluded as a missing oxidant in clean marine air containing aged pollution and that modelled RO2 concentrations are significantly underestimated under these conditions.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Science Letters, Wiley, Vol. 19, No. 8 ( 2018-08)
    Abstract: Measurements of nitryl chloride (ClNO 2 ) and its precursors (O 3 , NO 2 , particulate chloride) were made in 2014–2016 at three contrasting locations in the United Kingdom: Leicester, Penlee Point and Weybourne. ClNO 2 was observed at all sites and in every season, with the highest concentrations between 00:00 and 04:00 GMT. The median nocturnal concentration of ClNO 2 ranged between the detection limit (4.2 ppt) and 139 ppt. A clear seasonal cycle, with maxima in spring and winter, and significant differences between locations in the same season were observed. The main source of particulate chloride was sea salt aerosol (including at Leicester, ∼200 km from the coast). In general, ClNO 2 levels were controlled by the concentrations of O 3 and NO 2 , rather than by the uptake and reaction of N 2 O 5 with particulate chloride. Under these conditions, the seasonality and geographical distribution of ClNO 2 can be explained in terms of O 3 ‐limited and NO 2 ‐limited regimes affecting the formation of the N 2 O 5 precursor. A global version of the GEOS‐Chem model at medium resolution (2° × 2.5°) was not able to fully capture the observed seasonality of ClNO 2 , mostly because the model overestimated the concentrations of the precursors, particularly of nocturnal O 3 . A higher‐resolution (0.25° × 0.3125°) version of GEOS‐Chem showed better agreement with the observations, although it still overestimated ClNO 2 concentrations during summer.
    Type of Medium: Online Resource
    ISSN: 1530-261X , 1530-261X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2018
    detail.hit.zdb_id: 2025884-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Environmental Science: Atmospheres, Royal Society of Chemistry (RSC), Vol. 1, No. 7 ( 2021), p. 524-542
    Abstract: Tropospheric ozone (O 3 ) negatively impacts human health and is also a greenhouse gas. It is formed photochemically by reactions of nitrogen oxides (NO x ) and volatile organic compounds (VOCs), of which wildfires are an important source. This study presents data from research flights sampling wildfires in West and Central African savannah regions, both close to the fires and after the emissions had been transported several days over the tropical North Atlantic Ocean. Emission factors (EFs) in g kg −1 for NO x (as NO), six VOCs and formaldehyde were calculated from enhancement to mole fractions in data taken close to the fires. For NO x , the emission factor was calculated as 2.05 ± 0.43 g kg −1 for Senegal and 1.20 ± 0.28 g kg −1 for Uganda, both higher than the average value of 1.13 ± 0.6 g kg −1 for previous studies of African savannah regions. For most VOCs (except acetylene), EFs in Uganda were lower by factors of 20–50% compared to Senegal, with almost all the values below those in the literature. O 3 enhancement in the fire plumes was investigated by examining the ΔO 3 /ΔCO enhancement ratio, with values ranging from 0.07–0.14 close to the fires up to 0.25 for measurements taken over the Atlantic Ocean up to 200 hours downwind. In addition, measurements of O 3 and its precursors were compared to the output of a global chemistry transport model (GEOS-CF) for the flights over the Atlantic Ocean. Normalised mean bias (NMB) comparison between the measured and modelled data was good outside of the fire plumes, with CO showing a model under-prediction of 4.6% and O 3 a slight over-prediction of 0.7% (both within the standard deviation of the data). For NO x the agreement was poorer, with an under-prediction of 9.9% across all flights. Inside the fire plumes the agreement between modelled and measured values is worse, with the model being biased significantly lower for all three species. In total across all flights, there was an under-prediction of 29.4%, 16.5% and 37.5% for CO, O 3 and NO x respectively. Finally, the measured ΔO 3 /ΔCO enhancement ratios were compared to those in the model for the equivalent flight data, with the model showing a lower value of 0.17 ± 0.03 compared to an observed value of 0.29 ± 0.05. The results detailed here show that the O 3 burden to the North Atlantic Ocean from African wildfires may be underestimated and that further study is required to better study the O 3 precursor emissions and chemistry.
    Type of Medium: Online Resource
    ISSN: 2634-3606
    Language: English
    Publisher: Royal Society of Chemistry (RSC)
    Publication Date: 2021
    detail.hit.zdb_id: 3057711-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science Advances, American Association for the Advancement of Science (AAAS), Vol. 9, No. 3 ( 2023-01-20)
    Abstract: Aircraft observations in the remote Atlantic troposphere show evidence for HONO production occurring on various aerosol types.
    Type of Medium: Online Resource
    ISSN: 2375-2548
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 2810933-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 15 ( 2018-08-10), p. 11185-11203
    Abstract: Abstract. Recent field studies have suggested that sea-salt particulate nitrate (NITs) photolysis may act as a significant local source of nitrogen oxides (NOx) over oceans. We present a study of the global impact of this process on oxidant concentrations in the marine boundary layer (MBL) using the GEOS-Chem model, after first updating the model to better simulate observed gas–particle phase partitioning of nitrate in the marine boundary layer. Model comparisons with long-term measurements of NOx from the Cape Verde Atmospheric Observatory (CVAO) in the eastern tropical North Atlantic provide support for an in situ source of NOx from NITs photolysis, with NITs photolysis coefficients about 25–50 times larger than corresponding HNO3 photolysis coefficients. Short-term measurements of nitrous acid (HONO) at this location show a clear daytime peak, with average peak mixing ratios ranging from 3 to 6 pptv. The model reproduces the general shape of the diurnal HONO profile only when NITs photolysis is included, but the magnitude of the daytime peak mixing ratio is under-predicted. This under-prediction is somewhat reduced if HONO yields from NITs photolysis are assumed to be close to unity. The combined NOx and HONO analysis suggests that the upper limit of the ratio of NITs : HNO3 photolysis coefficients is about 100. The largest simulated relative impact of NITs photolysis is in the tropical and subtropical marine boundary layer, with peak local enhancements ranging from factors of 5 to 20 for NOx, 1.2 to 1.6 for OH, and 1.1 to 1.3 for ozone. Since the spatial extent of the sea-salt aerosol (SSA) impact is limited, global impacts on NOx, ozone, and OH mass burdens are small ( ∼ 1–3 %). We also present preliminary analysis showing that particulate nitrate photolysis in accumulation-mode aerosols (predominantly over continental regions) could lead to ppbv-level increases in ozone in the continental boundary layer. Our results highlight the need for more comprehensive long-term measurements of NOx, and related species like HONO and sea-salt particulate nitrate, to better constrain the impact of particulate nitrate photolysis on marine boundary layer oxidant chemistry. Further field and laboratory studies on particulate nitrate photolysis in other aerosol types are also needed to better understand the impact of this process on continental boundary layer oxidant chemistry.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 18, No. 5 ( 2018-03-12), p. 3541-3561
    Abstract: Abstract. The chemistry of the halogen species bromine and iodine has a range of impacts on tropospheric composition, and can affect oxidising capacity in a number of ways. However, recent studies disagree on the overall sign of the impacts of halogens on the oxidising capacity of the troposphere. We present simulations of OH and HO2 radicals for comparison with observations made in the remote tropical ocean boundary layer during the Seasonal Oxidant Study at the Cape Verde Atmospheric Observatory in 2009. We use both a constrained box model, using detailed chemistry derived from the Master Chemical Mechanism (v3.2), and the three-dimensional global chemistry transport model GEOS-Chem. Both model approaches reproduce the diurnal trends in OH and HO2. Absolute observed concentrations are well reproduced by the box model but are overpredicted by the global model, potentially owing to incomplete consideration of oceanic sourced radical sinks. The two models, however, differ in the impacts of halogen chemistry. In the box model, halogen chemistry acts to increase OH concentrations (by 9.8 % at midday at the Cape Verde Atmospheric Observatory), while the global model exhibits a small increase in OH at the Cape Verde Atmospheric Observatory (by 0.6 % at midday) but overall shows a decrease in the global annual mass-weighted mean OH of 4.5 %. These differences reflect the variety of timescales through which the halogens impact the chemical system. On short timescales, photolysis of HOBr and HOI, produced by reactions of HO2 with BrO and IO, respectively, increases the OH concentration. On longer timescales, halogen-catalysed ozone destruction cycles lead to lower primary production of OH radicals through ozone photolysis, and thus to lower OH concentrations. The global model includes more of the longer timescale responses than the constrained box model, and overall the global impact of the longer timescale response (reduced primary production due to lower O3 concentrations) overwhelms the shorter timescale response (enhanced cycling from HO2 to OH), and thus the global OH concentration decreases. The Earth system contains many such responses on a large range of timescales. This work highlights the care that needs to be taken to understand the full impact of any one process on the system as a whole.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2018
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...