GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Cell, Elsevier BV, Vol. 29, No. 4 ( 2016-04), p. 602-606
    Type of Medium: Online Resource
    ISSN: 1535-6108
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 2074034-7
    detail.hit.zdb_id: 2078448-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 900-900
    Abstract: Recent studies have shown that several miRNA are differentially expressed in hematopoietic stem cells (HSC) and involved in regulating self-renewal, pointing to a new axis of epigenetic control of HSC function. Murine studies have documented a role for miR-125a in regulating HSC as miR-125a enforced expression augments self-renewal. We examined whether these attributes are evolutionarily conserved within human hematopoiesis. Lentiviral vectors over-expressing miR-125a (miR-125OE) were developed and HSC function was investigated using xenotransplantation of CD34+ CD38- human umbilical cord blood (CB) hematopoietic stem and progenitor cells (HSPCs). miR-125OE resulted in significantly increased human bone marrow (BM) chimerism at 12 and 24 weeks post-transplantation and splenomegaly. Within enlarged spleens, there were significantly increased proportions of CD34+CD19+CD10+CD20-B lymphoid cells suggesting a partial B cell differentiation block at the pro-B cell stage. In the BM, CD41+ megakaryocytes, GlyA+ erythroid and CD3+ T cell populations were significantly expanded. Within the primitive compartment, multi-lymphoid progenitors (MLP) were massively expanded by 12 weeks, followed by a combined reduction of immuno-phenotypic HSC and multi-potent progenitors (MPP) by 24 weeks. Given this loss of immuno-phenotypic HSC, we wondered whether stem cell function was compromised in vivo. Secondary transplantation with limiting dilution (LDA) revealed that stem cell frequencies were increased by 4.5 fold in miR-125OE recipients. Using lentivirus sponge-mediated inhibition of miR-125 (miR-125KD) in CD34+CD38-human CB, we were able to directly link these effects to miR-125: B cells increased at the expense of T cells; immuno-phenotypic HSC increased with a concomitant loss of MLP; and functional HSC were decreased by 2.5 fold using secondary LDA assays. Together, these data strongly suggest that miR-125a expression levels regulate human HSC self-renewal and lineage commitment. Since HSC frequency increased so substantially upon miR-125OE, we asked whether more committed cell populations might also be endowed with enhanced self-renewal. Highly purified populations of HSC, MPP and MLP and CD34+CD38+ committed progenitors were transduced and transplanted cells into xenografts. Unexpectedly, miR-125OE transduced CD34+CD38+ progenitors produced a substantial graft after 12 weeks. Control transduced CD34+CD38+ cells did not engraft and only control transduced HSC generated a disseminating graft in recipient mice. miR-125OE transduced HSC and MPP generated robust engraftment, while MLP did not. In all cases, xenografts generated by CD34+CD38+ and MPP transduced with miR-125OE showed multi-lineage repopulation. Moreover, the miR-125OE grafts from CD34+CD38+ and MPP recipients were durable as secondary transplantation generated multi-lineage grafts for at least 20 weeks in 5/7 and 6/10 recipients, respectively; no control transduced groups generated secondary grafts. Thus, the enhancement of self-renewal by enforced expression of miR-125a occurs not only in HSC, but also in MPP and to an as yet unidentified subpopulation within the CD34+38+ committed progenitor compartment. Using protein mass spectrometry, we identified and validated a miR-125a target network in CD34+ CB that normally functions to restrain self-renewal in more committed progenitors. Together, our data suggest that increased miR-125a expression can endow an HSC-like program upon a selected set of non-self-renewing hematopoietic progenitors. Our findings offer the innovative potential to use MPP with enhanced self-renewal to augment limited sources of HSC to improve clinical outcomes. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2013
    In:  Cancer Research Vol. 73, No. 8_Supplement ( 2013-04-15), p. 2292-2292
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 8_Supplement ( 2013-04-15), p. 2292-2292
    Abstract: We recently demonstrated stem cell gene signatures predict clinical outcome in acute myeloid leukemia (AML) (Eppert et. al., Nature Medicine, 2011). Concomitant to this work, miRNA signatures for hematopoietic stem cells (HSC) and leukemia stem cells (LSC) were also generated. miRNA are small non-coding RNAs that regulate the translation and mRNA stability of protein coding genes with significant roles in the maintenance of human HSC (Lechman et. al., Cell Stem Cell, in press). To understand the functional role of miRNA in normal human blood development, we undertook an in vivo over-expression screen of 10 miRNA candidates over-represented in HSC and LSC. Lineage depleted human umbilical cord blood cells (Lin- CB) were transduced with lentivirus expressing either a candidate miRNA or control vector and xeno-transplanted into NSG mice. Three miRNA displayed a competitive growth advantage while 4 miRNA induced a growth disadvantage along with skewing of lineage output. A top LSC array candidate, miR-125b, showed the most pronounced phenotype with overt expansion of marked cells, enlarged spleens and increased lymphoid and erythroid output. Detailed analysis of miR-125b grafts revealed a greatly expanded MLP population, in comparison to HSC and MPP. Furthermore, upon enforced in vivo expression of miR-125b in 3 AML patient samples, we observed large increases in the CD34+CD117+ populations for all three AML samples, suggesting increased LSC numbers. Secondary LDA experiments revealed up to a 34 fold increase in LSC activity in comparison to control vector transduced AML cells. These data suggest that miR-125b normally functions in the limited self-renewal of lymphoid committed early progenitors and this function may be usurped during leukemogenesis to enhance LSC self-renewal. Citation Format: Eric R. Lechman, Karin G. Hermans, Stephanie Dobson, Kolja Eppert, Mark Minden, John E. Dick. Enforced expression of miR-125b promotes the in vivo expansion of human Lin- CB multi-lymphoid progenitors (MLP) and AML leukemia stem cells. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 2292. doi:10.1158/1538-7445.AM2013-2292
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2012
    In:  Cancer Research Vol. 72, No. 8_Supplement ( 2012-04-15), p. 3330-3330
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 72, No. 8_Supplement ( 2012-04-15), p. 3330-3330
    Abstract: Human acute myeloid leukemia (AML) is organized as a functional cellular hierarchy and is sustained by a rare population of leukemia stem cells (LSC). AML is a heterogeneous disease with a relapse rate of up to 80% depending on age of the patient and AML subtype. Recent work suggests that leukemia stem cell properties influence therapy response, overall survival, and relapse of the disease. In order develop more effective novel therapies that target this rare cell population; it is imperative that we better understand LSCs at the molecular level. Although it is generally accepted that oncogenic mutations underlie cancer initiation and progression, most studies have focused on protein coding genes. However, there is increasing recognition that non-coding RNAs can also play a role in leukemogenesis. MicroRNAs (miRNAs) are a family of small non-coding RNAs that function as important regulators of the translation of protein-coding genes. In order to identify LSC specific miRNAs, we fractionated 16 primary human AML samples into four sub-populations, each of which were xenotransplanted into immune-deficient mice to evaluate in vivo leukemia initiating capacity. Global miRNA expression profiling was performed on each population and a LSC specific miRNA signature generated by supervised analysis guided by the ability to initiate leukemia in vivo. Similarly, a human cord blood derived hematopoietic stem cell (HSC) enriched miRNA signature was also established. From these lists, we selected ten promising candidate miRNAs to assess for biological function. We have initiated a functional screen to determine the role of the candidate miRNAs using both in vivo and in vitro assays. Preliminary results show that enforced expression of two miRNA candidates strongly reduced engraftment capability of HSCs over untransduced HSCs in immune-deficient recipients. Moreover, enforced expression of three additional miRNA candidates show a competitive growth advantage of transduced HSCs over untransduced HSCs and compared to controls. Also, enforced expression of one of these three miRNAs in the surrogate LSCs of a unique leukemia cell line induces a strong proliferative advantage over untransduced LSCs in an in vitro culture setting. In conclusion, thus far we have identified five miRNAs that affect hematopoietic stem cell properties. Further in vivo and in vitro analysis will determine whether these miRNAs are suitable targets for therapy. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3330. doi:1538-7445.AM2012-3330
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Clinical Cancer Research Vol. 23, No. 24_Supplement ( 2017-12-15), p. PR07-PR07
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 24_Supplement ( 2017-12-15), p. PR07-PR07
    Abstract: Hematopoietic homeostasis is tightly regulated by controlling the balance between quiescence, self-renewal, and lineage-commitment of hematopoietic stem cells (HSCs). Deregulation of these processes and aberrant acquisition of stem cell-like properties is believed to be central to the pathogenesis of hematologic malignancies, such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, little is known about the molecular networks maintaining the stem cell state and the epigenetic and post-transcriptional regulation of determinants that control these programs. MicroRNAs (miRNAs) represent a large class of post-transcriptional regulators that mediate repression of multiple target mRNAs. We have previously shown that miR-126 and miR-125a are differentially expressed across the human hematopoietic hierarchy and function to control self-renewal and cell fate decisions by reinforcing gene expression programs in a developmental stage-specific manner (Lechman et al. Cell Stem Cell, 2012; Wojtowitz et al. Cell Stem Cell, 2016). To identify additional miRNA(s) that play a functional role in hematopoiesis, we performed an in vivo competitive repopulation screen in which candidate miRNAs were overexpressed (OE) in human CD34+CD38- umbilical cord blood (CB) cells and subsequently transplanted into immune-deficient mice for 24 weeks. miR-130a was shown to enhance long-term hematopoietic reconstitution and chosen for further investigation. At 12 and 24 weeks after transplantation, enforced miR-130a expression (including an mOrange-mO+ indicator) conferred a competitive advantage over untransduced CB cells demonstrated by increased CD45+ human chimerism in the injected femur (IF), bone marrow (BM), and spleen of recipient mice. miR-130 enforced expression (miR-130a OE) increased the proportion of mO+/hCD45+ cells by approximately 2- and 5-fold after 12 and 24 weeks of repopulation, respectively. miR-130a OE xenografts showed multilineage engraftment with increased myeloid lineage output and significantly enhanced erythroid development at the expense of B-lymphoid lineage output in BM and spleen of recipient mice. Detailed flow cytometry analysis of xenografts revealed accumulation of immature GlyA+/CD71+/CD36+ erythroid progenitors, suggesting a differentiation block at the polychromic erythroblast stage. Notably, miR-130a OE induced the expansion of CD34+CD38- Lin- compartment and increased proportion of CD34+CD38-CD90+CD45RA- immuno-phenotypic HSC. Secondary transplantation involving limiting dilution analysis revealed approximately a 10-fold increase in HSC frequency, consistent with a role of miR-130a in HSC self-renewal. The lineage potential of miR-130OE primitive cells was assessed in vitro using single-cell stromal-based myelo-erythroid differentiation assay. Enforced expression of miR-130a in human HSC and multipotent progenitors (MPP) resulted in the decreased frequency of unipotent myeloid output (M colonies) and increased multipotent output (M/E/Meg, E/Meg colonies), supporting a role of miR-130a in erythroid-megakaryocytic fate specification. Label-free semiquantitative proteomics and subsequent gene set enrichment pathway analysis (GSEA) were performed on miR-130a OE and control transduced CD34+ CB cells to elucidate molecular mechanism(s) of miR-130a function. We identified that miR-130a modulated pathways centered on translational regulation and chromatin modification. Together, our data suggest that miR-130a plays a role in the regulation of the HSC self-renewal and erythroid differentiation. Given that several studies showed aberrant expression of miR-130a in MDS and some AML subtypes, it is important to delineate the role of miR-130a in normal hematopoiesis to comprehend its potential contribution to the development of hematologic malignancies. This abstract is also being presented as Poster 40. Citation Format: Gabriela Krivdova, Eric R. Lechman, Erwin M. Schoof, Veronique Voisin, Olga I. Gan, Aaron Trotman-Grant, Karin G. Hermans, Gary D. Bader, John E. Dick. MicroRNA-130a regulates hematopoietic stem cell self-renewal and erythroid differentiation [abstract]. In: Proceedings of the Second AACR Conference on Hematologic Malignancies: Translating Discoveries to Novel Therapies; May 6-9, 2017; Boston, MA. Philadelphia (PA): AACR; Clin Cancer Res 2017;23(24_Suppl):Abstract nr PR07.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 1648-1648
    Abstract: Acute Myeloid Leukemia (AML) is a heterogeneous disease with a relapse rate of up to 80% depending on patient age and AML subtype. AML is organized as a functional cellular hierarchy and is sustained by a rare population of leukemia stem cells (LSC). Recent work suggests that LSC properties influence therapy response, overall survival, and disease relapse. In order to develop more effective novel therapies that target this rare cell population; it is imperative that we better understand LSCs at the molecular level. Although it is generally accepted that oncogenic mutations underlie cancer initiation and progression, most studies have focused on protein coding genes. However, there is increasing recognition that non-coding RNAs can also play a role in leukemogenesis. microRNAs (miRNA) are a family of small non-coding RNAs that function as important regulators of mRNA stability and translation of protein-coding genes with significant roles in maintenance of human hematopoietic stem cells (HSC) (Lechman et. al., Cell Stem Cell, 2012). To understand the functional role of miRNA in human hematopoiesis, we generated HSC- and leukemia stem cell (LSC)-specific microRNA (miRNA) profiles by microarray analysis of sorted cell fractions from umbilical cord blood (CB) and AML patient samples that have been validated in xenograft assays. We identified ten miRNA candidates over-represented in HSC and/or LSC. To determine whether these were functional and impacted on stem cell properties we transduced lineage depleted CB cells with lentivirus expressing either a candidate miRNA or control vector followed by transplantation into immune deficient mice. Three miRNAs (miR-125b, miR-130a, miR-155) conferred a competitive growth advantage while four miRNAs (miR-99a, miR133a, miR194, miR-196b) conferred a growth disadvantage. miR-125b, a top LSC array candidate, showed the most pronounced phenotype with an overt expansion of transduced cells (19% to 96.2%) and enlarged spleens (2.4 fold increase). Detailed flow cytometric analysis of the miR-125b human grafts in recipient mice revealed a greatly expanded proportion of multi-lymphoid progenitors (MLP), in comparison to HSC and multi-potent progenitors. Furthermore, upon enforced in vivo expression of miR-125b in three AML patient samples, we observed large increases in the primitive primitive CD34+CD117+ populations (CD34+: 2.4-4.6 fold increase; CD117+: 1.3-4.1 fold increase) and a decrease in the proportion of differentiated CD14+/CD15+ cells (CD14+: 6.2-7.6 fold decrease; CD15+: 1.2-6 fold decrease) in leukemic grafts. Limiting dilution assays into secondary recipients revealed up to a 34-fold increase in LSC frequency compared to control vector transduced AML cells. Overall, these data suggest that miR-125b normally functions in the limited self-renewal of lymphoid committed early progenitors and this function may be usurped during leukemogenesis to enhance LSC self-renewal. miR-125b belongs to an evolutionarily conserved family consisting of three paralogs (miR-125a; miR-125b1; miR-125b2). Recent studies present strong evidence for a role of the miR-125 family in normal and malignant murine hematopoiesis, yet comprehensive functional inconsistencies remain in regards to the precise roles for each paralog. We are currently carrying out additional enforced expression studies directly comparing these family members in vitro and in vivo in order to clarify the functional roles of miR-125a (a top HSC array candidate) and miR-125b (a top LSC array candidate) in both normal and malignant human hematopoiesis. These studies will determine whether the miR-125 family is a suitable target for therapy of hematological malignancies. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3579-3579
    Abstract: The multistep pathogenesis of Down Syndrome (DS)-associated pre-leukemia and subsequent progression to acute leukemia is one of the better characterized of all human blood malignancies. Children with DS have a 150 fold increased risk of developing acute megakaryoblastic leukemia (AMKL) and greater than 30 fold increased risk of developing B cell acute lymphoblastic leukemia (B-ALL). DS-AMKL is often preceded in late fetal development or soon after birth by a pre-leukemic syndrome termed transient myeloproliferative disorder (TMD), which is characterized by high numbers of abnormal megakaryocytes and megakaryoblasts in the circulation, spleen and liver. Previous work has demonstrated that constitutional trisomy 21 results in expansion of megakaryocyte-erythroid progenitors (MEP) in fetal liver (FL) with a concomitant reduction in fetal pre-pro-B cells. The expanded MEP population subsequently acquires an N-terminal truncating mutation in the transcription factor GATA1 (termed GATA1s), leading to selective expansion of a pre-leukemic erythromegakaryocytic blast population. While the majority of DS-TMD cases spontaneously resolve within 3 months, up to 15% of DS-TMD neonates can develop lethal progressive liver fibrosis. Progression to AMKL following spontaneous resolution of TMD is associated with acquisition of at least one additional germline mutation. While murine models implicate a role for trisomy 21 and GATA1s in the leukemogenic process, they do not faithfully recapitulate the pathology of the human disease. Previous attempts to model DS-associated TMD through xenotransplantation of DS-FL and DS-TMD cells have proven technically challenging. Therefore, there remains a need for a human model to investigate the genetic steps required for initiation of DS-TMD and progression to DS-AMKL. We previously identified a leukemia stem cell (LSC)-associated miRNA signature by sorting 13 adult AML patient samples into 4 sub-populations based on CD34/CD38 expression, followed by supervised analysis guided by the in vivo leukemia initiating capacity of each sub-population in an optimized xenotransplant model. Interestingly, the top three LSC-associated miRNA candidates are all located on chromosome 21. To determine the role of these miRNA in human leukemogenesis, we engineered a tri-cistronic lentivector for enforced expression. Compared to control vector-transduced cells, tri-cistronic vector-transduced Lin‒CD34+CD38‒ cord blood (CB) cells generated a myeloproliferative syndrome in xenotransplanted mice, with splenomegaly, enhanced CD45+ human bone marrow cellularity and blocked B cell development at the pro B cell stage. Human grafts were enriched for CD45+CD33+CD117+CD123+CD41lo/CD42lo cells in bone marrow, peripheral blood, spleen and liver. In the CD45‒ compartment, a distinct lineage switch was observed, with CD41+ megakaryocytic output supplanting normal CD235+ erythroid output. High numbers of CD41+CD42b+CD61+CD34lo human platelets were detected in peripheral blood and spleen. Blood films revealed large dysplastic platelets and megakaryoblast-like cells. Histology showed hCD45+ packed bone marrow cavities, with loss of normal architecture. Bone marrow, spleen and liver all showed extensive reticulin deposition. In the lineage negative (Lin-) fraction of BM, we observed an expansion in the proportion of human MEP and multi-lymphoid progenitors (MLP). To further model leukemic progression, we expressed GATA1s in combination with our tri-cistronic miRNA vector. Mice transplanted with double transduced cells showed intermediate levels of splenomegaly and bone marrow cellularity compared to mice transplanted with cells transduced with tri-cistronic vector alone. The addition of GATA1s induced a complete loss of B cell development while restoring erythroid development. In human Lin‒ cells isolated from the BM, addition of mutant GATA1s further augmented the proportion and total numbers of MEP while restoring the MLP compartment to normal levels. These data demonstrate that we have generated a human xenograft model of DS-TMD through enforced expression in normal CB cells of a tri-cistron comprising 3 LSC-associated miRNA in combination with mutant GATA1s. With this model in place, we plan to further interrogate the genetic lesions involved in progression from DS-TMD to DS-AMKL. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cell Reports, Elsevier BV, Vol. 38, No. 10 ( 2022-03), p. 110481-
    Type of Medium: Online Resource
    ISSN: 2211-1247
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2649101-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...