GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Geological Society of America ; 2022
    In:  Geology Vol. 50, No. 6 ( 2022-06-01), p. 691-696
    In: Geology, Geological Society of America, Vol. 50, No. 6 ( 2022-06-01), p. 691-696
    Abstract: Grenville-age (1.3–0.9 Ga) zircons represent one of the most ubiquitous detrital zircon (DZ) age modes on Earth. In North America, given the widespread occurrence of Grenville basement, Grenville DZs are commonly viewed as nondiagnostic with regard to source region in provenance studies. Systematic recovery of DZ core-rim U-Pb ages makes it possible to identify and differentiate previously indistinguishable basement source terranes by leveraging their multistage tectono-magmatic evolution. Our analysis demonstrates that Grenville DZs exhibit distinct rim ages in different parts of the North American Paleozoic Appalachian-Ouachita-Marathon foreland. Whereas Grenville DZ grains in the eastern foreland, sourced from the southern Appalachian orogen in the eastern United States, exhibit Taconian and Acadian (490–350 Ma) rims, grains in the western foreland, derived from Mexico, mainly show Neoproterozoic (750–500 Ma) rim ages. This difference permits differentiation of nondiagnostic core ages by their distinctive rim ages. Furthermore, core-rim paired ages can illuminate potential genetic relationships among coexisting age components in DZ spectra, thereby indicating whether the DZs are derived from separate sources or from a single source with multistage tectono-magmatic histories. Thus, DZ rim-core ages can provide critical insights into reconstructing global source-to-sink systems and elucidating genetic linkages within multistage orogenic systems.
    Type of Medium: Online Resource
    ISSN: 0091-7613 , 1943-2682
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2022
    detail.hit.zdb_id: 184929-3
    detail.hit.zdb_id: 2041152-2
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of South American Earth Sciences, Elsevier BV, Vol. 114 ( 2022-03), p. 103681-
    Type of Medium: Online Resource
    ISSN: 0895-9811
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 1494875-8
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: International Geology Review, Informa UK Limited, Vol. 61, No. 17 ( 2019-11-22), p. 2118-2142
    Type of Medium: Online Resource
    ISSN: 0020-6814 , 1938-2839
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2019
    detail.hit.zdb_id: 2070023-4
    detail.hit.zdb_id: 2122950-8
    SSG: 13
    SSG: 7,41
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Geological Society of America ; 2023
    In:  Geological Society of America Bulletin ( 2023-07-19)
    In: Geological Society of America Bulletin, Geological Society of America, ( 2023-07-19)
    Abstract: Petrographic and detrital zircon U-Pb analysis of modern beach sands and river sands from major catchments in northeastern Mexico draining to the Gulf of Mexico provides evidence for a minimum of 650 km of littoral sand transport southward from the mouth of the Rio Grande at the Mexico-U.S. border to the central part of the state of Veracruz, Mexico. Principal tracers of Rio Grande sand include: (1) quartzose composition that contrasts with lithic compositions of sand in eastern Mexico rivers and (2) detrital zircon ages with Mesoproterozoic modes at 1.8−1.5 Ga and 1.4 Ga, age groups that are typical of basement and derivative sediment of the SW United States but are uncommon to rare in Mexican river catchments. In contrast, abundant Miocene and younger grains in beach sands of Veracruz indicate primary sediment derivation from active and recently active volcanoes in the Trans-Mexican volcanic belt in central Mexico. A proportional decrease in sand of Rocky Mountain provenance with distance southward along the coast from the mouth of the Rio Grande and absence of Miocene and younger zircon grains in beaches north of rivers draining the Trans-Mexican volcanic belt indicate net littoral sand transport southward along the eastern coast of Mexico, demonstrating that wintertime shoreline-parallel surface currents rather than north-directed summertime currents dominate sediment transfer. Sand samples of Tamaulipas beaches in northeastern Mexico commonly have equal or higher proportions of U.S.-derived Mesoproterozoic zircon grains than are present in river bar sand of the lower Rio Grande and the Rio Grande delta, and thus require that littoral processes rework and incorporate coastal dune and beach sands of northeastern Mexico that are enriched in predam Rio Grande sediment. Implied coastal erosion may be related to Holocene transgression or interruption of sediment supply to the coastal sediment transport system by dams in the Rio Grande drainage basin. Such coastal erosion is impacting long-term shoreline stability and viability of the littoral environment.
    Type of Medium: Online Resource
    ISSN: 0016-7606 , 1943-2674
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2023
    detail.hit.zdb_id: 2028776-8
    detail.hit.zdb_id: 2008165-0
    detail.hit.zdb_id: 449720-X
    detail.hit.zdb_id: 1351-1
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Basin Research, Wiley, Vol. 33, No. 4 ( 2021-07), p. 2281-2302
    Abstract: Sea level is thought to be the primary driver of alternating deposition of carbonate and siliciclastic sediment in shelf settings, with carbonates dominating during transgressive/highstands and siliciclastics during lowstands. Although sediment supply is critically important for shelf‐margin growth in siliciclastic systems, few studies demonstrate its impact on mixed carbonate‐siliciclastic systems. The Permian Basin in Texas, United States, provides an opportunity to investigate the basin evolution regarding the source, sediment routing and particularly shelf/slope growth from syn‐ to postorogenic phases during alternating carbonate and siliciclastic sedimentation. Published detrital zircon data show that the proportion of orogen‐related sources decreased significantly from an earliest Permian synorogenic phase (ca. 298 Ma) to a Leonardian (ca. 280–271 Ma) postorogenic phase, in concert with a grain‐size change from fine‐ to medium‐grained sand to silt. Although along‐strike lateral variabilities exist on the shelf margin, the shelf‐margin evolution characteristics show a significant difference among the Northern Shelf, Eastern Shelf and Central Basin Platform. The synorogenic Eastern Shelf exhibits a significant higher progradation rate than does the postorogenic Northern Shelf. The progradation and aggradation ratio of siliciclastic‐rich intervals in the Eastern Shelf is significantly higher than those of carbonate‐rich intervals in the Eastern Shelf and carbonate‐ or siliciclastic‐rich intervals in the Northern Shelf. In contrast, the Central Basin Platform, with no siliciclastic sediment supply, records almost no progradation regardless of orogenic phases. There is an increase in slope gradient with decreasing sediment supply during this second‐order sequence from the Permian Cisuralian Series to the end of the Guadalupian Series. This study demonstrates that tectonically driven siliciclastic sediment supply was the main mechanism controlling the shelf and slope evolution in alternating siliciclastic and carbonate deposition.
    Type of Medium: Online Resource
    ISSN: 0950-091X , 1365-2117
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2019914-4
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2023
    In:  Basin Research Vol. 35, No. 2 ( 2023-04), p. 489-509
    In: Basin Research, Wiley, Vol. 35, No. 2 ( 2023-04), p. 489-509
    Abstract: Detrital zircon (DZ) geochronology has become a popular tool in provenance studies during the past two decades. However, similar zircon crystallization ages from different source regions greatly hamper the interpretation of sediment dispersal and recycling processes. The Alleghenian–Ouachita–Marathon (AOM) foreland and vicinity in North America is a region where some dominant DZ age groups could come from both the southern Appalachians in the eastern United States and the Gondwanan terranes in Mexico. In this study, we present 1045 new DZ U–Pb ages and 81 DZ core–rim age pairs in lower Permian sandstone in the Permian Basin and Miocene sandstone in the eastern Gulf of Mexico (GOM). These new data were integrated with published DZ single U–Pb age and core–rim ages from syn‐ to post‐orogenic strata in the Permian Basin, Marathon foldbelt, southern Appalachian foreland basin and eastern GOM to interpret the sediment‐dispersal models in the AOM foreland and eastern GOM. Our models show that during the Leonardian Stage, sediments derived from the Appalachians were first delivered to the US midcontinent and then recycled to the Permian Basin; during the Miocene, sediment from the Appalachians fluxed to the eastern GOM, with no longshore mixing from the western GOM. These models based on the integration of single U–Pb and core–rim ages are consistent with published results that used other methods, including zircon single U–Pb age, zircon Hf isotopic data, zircon (U–Th)/He age, sedimentology and stratigraphy. Our results demonstrate that although some limitations exist, zircon core–rim age is a powerful tool, adding an extra constraint on the interpretation of sediment‐dispersal systems. This tool is particularly applicable to the post‐orogenic stage, during which the sediment pathways are more complicated because of the dominant input from distal sources. Insights gained in this study imply that this novel strategy of using core and rim ages could be integrated with other methods to better understand sediment dispersal.
    Type of Medium: Online Resource
    ISSN: 0950-091X , 1365-2117
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2023
    detail.hit.zdb_id: 2019914-4
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2021
    In:  Palaeogeography, Palaeoclimatology, Palaeoecology Vol. 572 ( 2021-06), p. 110386-
    In: Palaeogeography, Palaeoclimatology, Palaeoecology, Elsevier BV, Vol. 572 ( 2021-06), p. 110386-
    Type of Medium: Online Resource
    ISSN: 0031-0182
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 1497393-5
    detail.hit.zdb_id: 417718-6
    SSG: 12
    SSG: 13
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Journal of South American Earth Sciences, Elsevier BV, Vol. 95 ( 2019-11), p. 102264-
    Type of Medium: Online Resource
    ISSN: 0895-9811
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 1494875-8
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Geological Society of America ; 2020
    In:  Geosphere Vol. 16, No. 2 ( 2020-04-01), p. 567-593
    In: Geosphere, Geological Society of America, Vol. 16, No. 2 ( 2020-04-01), p. 567-593
    Abstract: The sedimentary fill of peripheral foreland basins has the potential to preserve a record of the processes of ocean closure and continental collision, as well as the long-term (i.e., 107–108 yr) sediment-routing evolution associated with these processes; however, the detrital record of these deep-time tectonic processes and the sedimentary response have rarely been documented during the final stages of supercontinent assembly. The stratigraphy within the southern margin of the Delaware Basin and Marathon fold and thrust belt preserves a record of the Carboniferous–Permian Pangean continental assembly, culminating in the formation of the Delaware and Midland foreland basins of North America. Here, we use 1721 new detrital zircon (DZ) U-Pb ages from 13 stratigraphic samples within the Marathon fold and thrust belt and Glass Mountains of West Texas in order to evaluate the provenance and sediment-routing evolution of the southern, orogen-proximal region of this foreland basin system. Among these new DZ data, 85 core-rim age relationships record multi-stage crystallization related to magmatic or metamorphic events in sediment source areas, further constraining source terranes and sediment routing. Within samples, a lack of Neoproterozoic–Cambrian zircon grains in the pre-orogenic Mississippian Tesnus Formation and subsequent appearance of this zircon age group in the syn-orogenic Pennsylvanian Haymond Formation point toward initial basin inversion and the uplift and exhumation of volcanic units related to Rodinian rifting. Moreover, an upsection decrease in Grenvillian (ca. 1300–920 Ma) and an increase in Paleozoic zircons denote a progressive provenance shift from that of dominantly orogenic highland sources to that of sediment sources deeper in the Gondwanan hinterland during tectonic stabilization. Detrital zircon core-rim age relationships of ca. 1770 Ma cores with ca. 600–300 Ma rims indicate Amazonian cores with peri-Gondwanan or Pan-African rims, Grenvillian cores with ca. 580 Ma rims are correlative with Pan-African volcanism or the ca. 780–560 Ma volcanics along the rifted Laurentian margin, and Paleozoic core-rim age relationships are likely indicative of volcanic arc activity within peri-Gondwana, Coahuila, or Oaxaquia. Our results suggest dominant sediment delivery to the Marathon region from the nearby southern orogenic highland; less sediment was delivered from the axial portion of the Ouachita or Appalachian regions suggesting that this area of the basin was not affected by a transcontinental drainage. The provenance evolution of sediment provides insights into how continental collision directs the dispersal and deposition of sediment in the Permian Basin and analogous foreland basins.
    Type of Medium: Online Resource
    ISSN: 1553-040X
    Language: English
    Publisher: Geological Society of America
    Publication Date: 2020
    detail.hit.zdb_id: 2201816-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...