GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 1025-1025
    Abstract: Abstract 1025 Poster Board I-47 Acute myeloid leukemia (AML) initiating cells reside within and utilize the bone marrow microenvironment, as a sanctuary to evade chemotherapy and to maintain self-renewal. Following treatment, these leukemia stem cells (LSC) re-emerge and reconstitute disease, leading to relapse. The canonical Wnt signaling pathway is frequently dysregulated in LSC and recent data indicates that Dkk1 (a potent endogenous Wnt inhibitor) may have a therapeutic role in treating AML. Microenvironment specific Dkk1 expression inhibits hematopoietic stem cell (HSC) Wnt and extinguishes HSC self-renewal in vivo, identifying the Wnt pathway as essential in normal HSC-niche homeostasis. We investigated the importance of bone marrow microenvironment Wnt signaling in LSC survival. AML was generated using retroviral transduction of murine bone marrow with the MLL-AF9 fusion oncogene. We then assessed the potential for niche-directed Wnt inhibition of LSC using 2.3kbColl1alpha-Dkk1 transgenic mice in which Dkk1 expression is restricted to osteoblasts. AML was observed in the Dkk1 or wild type mice with similar disease latency and phenotype. AML was also observed in secondary transplant recipients, although there was a reduction of LSC (linlowcKithighSca-1-FcGRII/III+CD34+) derived from Dkk1 mice (LSC frequency 2.8% WT vs 1.6% Dkk1, p 〈 0.05), correlating with a subtle prolongation in disease latency (n=15, 20 days WT vs. 24 days Dkk1, p 〈 0.001). To determine the status of Wnt signaling in MLL-AF9 AML, we generated AML in bone marrow derived from TOPGal reporter mice that harbor a Tcf/Lef responsive promoter with a LacZ reporter, and quantified LacZ expression or galactosidase protein levels. Wnt activation was increased following transformation of bone marrow with MLL-AF9 (relative TOPGal expression 1.35 empty vector vs 2.58 MLLAF9, p=0.03). To assess the effects of osteoblast-restricted Dkk1 expression in vivo, Wnt signaling was measured in LSC purified by high-speed multiparameter flow cytometry. Reporter activity (fluorescein di-β-D-galactopyranoside (FDG), Invitrogen) was unchanged in LSC from WT or Dkk1 recipients (Median fluorescent intensity 552 vs 542, p=0.85), indicating that, in contrast with normal HSC, Wnt signaling in LSC is relatively resistant to Dkk1 expression in the niche. To better understand the mechanism of LSC resistance to Dkk1, we examined the homing and micro-localization of LSC in vivo using live, 3 dimensional two photon-confocal hybrid imaging of the bone marrow microenvironment. LSC proliferate with similar kinetics in Dkk1 or WT recipients (proliferating fraction 57.7% WT vs 50.3% Dkk1 LSC p=0.48). However, when compared to HSC, LSC home with less affinity to osteoblasts and may escape the effects of osteoblast specified Dkk1 expression through residence in a niche that is physically distant from endosteum (Median distance to osteoblast 18um WT vs 20.6um Dkk1 LSC, p=0.13). Taken together, these data indicate that MLL-AF9 LSC can escape the normal HSC-niche homeostatic constraints regulated by Wnt, an observation that may have important therapeutic implications. Disclosures: Scadden: Fate Therapeutics: Consultancy. Gilliland:Merck: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Cell, Elsevier BV, Vol. 17, No. 6 ( 2010-06), p. 584-596
    Type of Medium: Online Resource
    ISSN: 1535-6108
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2010
    detail.hit.zdb_id: 2074034-7
    detail.hit.zdb_id: 2078448-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 115, No. 17 ( 2010-04-29), p. 3489-3497
    Abstract: Apc, a negative regulator of the canonical Wnt signaling pathway, is a bona-fide tumor suppressor whose loss of function results in intestinal polyposis. APC is located in a commonly deleted region on human chromosome 5q, associated with myelodysplastic syndrome (MDS), suggesting that haploinsufficiency of APC contributes to the MDS phenotype. Analysis of the hematopoietic system of mice with the Apcmin allele that results in a premature stop codon and loss of function showed no abnormality in steady state hematopoiesis. Bone marrow derived from Apcmin mice showed enhanced repopulation potential, indicating a cell intrinsic gain of function in the long-term hematopoietic stem cell (HSC) population. However, Apcmin bone marrow was unable to repopulate secondary recipients because of loss of the quiescent HSC population. Apcmin mice developed a MDS/myeloproliferative phenotype. Our data indicate that Wnt activation through haploinsufficiency of Apc causes insidious loss of HSC function that is only evident in serial transplantation strategies. These data provide a cautionary note for HSC-expansion strategies through Wnt pathway activation, provide evidence that cell extrinsic factors can contribute to the development of myeloid disease, and indicate that loss of function of APC may contribute to the phenotype observed in patients with MDS and del(5q).
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...