GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 2003-2003
    Abstract: T cell immunoreceptor with Ig and ITIM domains (TIGIT) is a co-inhibitory molecule containing an immunoreceptor tyrosine-based inhibition motif (ITIM) within its cytoplasmic tail, and is highly expressed on regulatory T cells and activated CD4+ T, CD8+ T, and NK cells. TIGIT competes with CD226, which contains an immunoreceptor tyrosine-based activation motif (ITAM) within its cytoplasmic tail for ligands poliovirus receptor (PVR) and poliovirus receptor-related 2 (PVRL2), with higher affinity to PVR. The ligands are expressed on the surface of antigen presenting cells and at high levels on most tumors. Therefore, when TIGIT is present, the ligands preferentially engage TIGIT rather than CD226, leading to cell suppression. We have generated antibodies against TIGIT that blocks ligand binding and inhibits TIGIT signaling. The clinical candidate, OMP-313M32 binds human TIGIT but not rodent and non-human primate TIGIT. Therefore, a surrogate antibody was generated for pre-clinical assessments in mice. Antibody 313R12 is an anti-mouse TIGIT antibody that can block mouse PVR ligand binding and inhibit TIGIT signaling in a manner similar to the clinical candidate OMP-313M32. 313R12 inhibited the growth of syngeneic colon and kidney tumors in immune competent mice. In some cases, anti-TIGIT antibody 313R12 caused complete tumor regression and a potent anti-tumor immune memory response as demonstrated by the lack of tumor growth upon re-challenge of mice that remained tumor-free after prior anti-TIGIT treatment. Mechanistically, anti-TIGIT antibody 313R12 was shown to induce a Th1 response and increase cytotoxic T lymphocyte (CTL) activity. By in vivo depletion of T cell populations, we have shown that CD8 T cell depletion completely abrogated the anti-TIGIT therapeutic effect, whereas CD4 T cell depletion led to partial reversal of efficacy of anti-TIGIT. Therefore, both CD4+ and CD8+ T cells are critical for anti-TIGIT-mediated immune responses. Using mice reconstituted with human hematopoietic stem cells, we also demonstrated that the clinical candidate OMP-313M32 inhibits patient-derived melanoma tumor growth. Taken together, these data demonstrate that anti-TIGIT therapy suppresses tumor growth and generates long-term immunological memory against multiple tumors. Citation Format: Angie Inkyung Park, Minu Srivastava, Erin Mayes, Hyun-Bae Jie, Rui Yun, Christopher Murriel, Ming-hong Xie, Andrew Lam, May Ji, Fumiko Axelrod, Jorge Monteon, John Lewicki, Tim Hoey, Austin Gurney. Antibody against TIGIT (T cell immunoreceptor with Ig and ITIM domains) induces anti-tumor immune response and generates long-term immune memory [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2003. doi:10.1158/1538-7445.AM2017-2003
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 2612-2612
    Abstract: TIGIT (T cell immunoreceptor with Ig and ITIM domains) has been recently described as an inhibitory receptor which blocks CD8 T cell-mediated anti-tumor immune responses. We have generated an anti-mouse TIGIT antibody (313R12) to evaluate drug efficacy and mechanism of action in pre-clinical tumor models. Anti-TIGIT as a single agent promoted an anti-tumor immune response in multiple syngeneic mouse tumor models. Anti-TIGIT enhanced tumor specific T cell responses, particularly of the Th1 type and reduced Th2 type responses and also increased the function of cytotoxic T cells. Furthermore, anti-TIGIT displayed combination activity with immune checkpoint inhibitors anti-PD1 and anti-PDL1 in inhibiting tumor growth, promoting complete tumor rejection and significantly increasing mouse survival in the murine CT26 colon carcinoma model as compared to controls and single agents alone. Mice “cured” with anti-TIGIT/anti-PDL1 or anti-TIGIT/anti-PD1 combination treatments did not form tumors upon subsequent re-challenges with increasing number of CT26 tumor cells, suggesting the existence of immunologic memory. IL2 and tumor-specific IFN-γ production by splenic T cells were increased in mice who responded to combination treatment compared to controls. Additionally, both effector and memory CD8+ T cell frequencies were increased within the total CD8+ T cell population in responding mice. We also demonstrated a systemic increase in tumor-specific CD8 T cells after anti-TIGIT/anti-PDL1 combination treatment compared to controls. Therefore, these results suggest that co-targeting of TIGIT and PD1 or PDL1 may be an effective and durable cancer therapy by increasing T cell-mediated anti-tumor immune responses and promoting long-term immunological memory. Citation Format: Minu K. Srivastava, Rui Yun, Erin Mayes, Janice Yu, Hyun-Bae Jie, Fumiko Axelrod, Ming-Hong Xie, Jorge Monteon, Andrew Lam, May Ji, Yuwang Liu, John Lewicki, Tim Hoey, Austin Gurney, Angie Inkyung Park. Anti-Tigit induces T cell mediated anti-tumor immune response and combines with immune checkpoint inhibitors to enhance strong and long term anti-tumor immunity [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 2612. doi:10.1158/1538-7445.AM2017-2612
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...