GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Lai, Robin Kit-Ho  (2)
  • Wong, Maria Pik  (2)
Materialart
Sprache
Erscheinungszeitraum
Fachgebiete(RVK)
  • 1
    Online-Ressource
    Online-Ressource
    American Association for Cancer Research (AACR) ; 2016
    In:  Clinical Cancer Research Vol. 22, No. 12 ( 2016-06-15), p. 3105-3117
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 22, No. 12 ( 2016-06-15), p. 3105-3117
    Kurzfassung: Purpose: Hepatocellular carcinoma (HCC) lacks effective curative therapy. Hypoxia is commonly found in HCC. Hypoxia elicits a series of protumorigenic responses through hypoxia-inducible factor-1 (HIF1). Better understanding of the metabolic adaptations of HCC cells during hypoxia is essential to the design of new therapeutic regimen. Experimental Design: Expressions of genes involved in the electron transport chain (ETC) in HCC cell lines (20% and 1% O2) and human HCC samples were analyzed by transcriptome sequencing. Expression of NDUFA4L2, a less active subunit in complex I of the ETC, in 100 pairs of HCC and nontumorous liver tissues were analyzed by qRT-PCR. Student t test and Kaplan–Meier analyses were used for clinicopathologic correlation and survival studies. Orthotopic HCC implantation model was used to evaluate the efficiency of HIF inhibitor. Results: NDUFA4L2 was drastically overexpressed in human HCC and induced by hypoxia. NDUFA4L2 overexpression was closely associated with tumor microsatellite formation, absence of tumor encapsulation, and poor overall survival in HCC patients. We confirmed that NDUFA4L2 was HIF1-regulated in HCC cells. Inactivation of HIF1/NDUFA4L2 increased mitochondrial activity and oxygen consumption, resulting in ROS accumulation and apoptosis. Knockdown of NDUFA4L2 markedly suppressed HCC growth and metastasis in vivo. HIF inhibitor, digoxin, significantly suppressed growth of tumors that expressed high level of NDUFA4L2. Conclusions: Our study has provided the first clinical relevance of NDUFA4L2 in human cancer and suggested that HCC patients with NDUFA4L2 overexpression may be suitable candidates for HIF inhibitor treatment. Clin Cancer Res; 22(12); 3105–17. ©2016 AACR.
    Materialart: Online-Ressource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2016
    ZDB Id: 1225457-5
    ZDB Id: 2036787-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. LB-310-LB-310
    Kurzfassung: Background & Aims: Liver is a major metabolic organ, yet the detailed metabolic alterations driving hepatocellular carcinoma (HCC) remain elusive. The rapid growing nature of HCC results in oxygen deprivation or hypoxia in regions of tumors with insufficient blood supply. Hypoxia unbalances the electron flow through the electron transport chain (ETC) resulting in reactive oxygen species (ROS) accumulation. Here we aim at delineating the mechanisms by which HCC evades oxidative stress. Methods: We performed transcriptome sequencing to study the gene expression profile in both HCC patients and HCC cell line. The mRNA expression of 100 paired HCC and corresponding non-tumorous tissues were analyzed. Stable RNAi knockdown by shRNA and genetic knockout by TALEN were established in HCC cells for functional characterization. Results: We demonstrated that HCC cells specifically utilized the mitochondrial protein NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 gene (NDUFA4L2), in the complex I of the ETC, to survive hypoxia. NDUFA4L2 was drastically over-expressed in human HCC and closely associated with poor clinical outcomes in HCC patients. We confirmed that NDUFA4L2 was regulated by HIF-1α in HCC cells. Inactivation of HIF-1α/NDUFA4L2 in different HCC cell lines increased mitochondrial activity and oxygen consumption, resulting in ROS accumulation and ROS-mediated apoptosis in HCC cells. Knockdown of NDUFA4L2 markedly suppressed HCC growth and metastasis in vitro and in vivo. In addition, HIF inhibitors, digoxin and sorafenib, significantly suppressed growth of tumors that expressed high level of NDUFA4L2 in orthotopic HCC model. Conclusions: Our results have unprecedentedly uncovered the clinical relevance and oncogenic roles of NDUFA4L2 in HCC. Citation Format: Robin Kit-Ho Lai, Irix Ming-Jing Xu, David Kung-Chun Chiu, Aki Pui-Wah Tse, Larry Lai Wei, Cheuk-Ting Law, Derek Lee, Chun-Ming Wong, Maria Pik Wong, Irene Oi-Lin Ng, Carmen Chak Lui Wong. NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) reduces oxidative stress to promote hepatocellular carcinoma. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-310.
    Materialart: Online-Ressource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: American Association for Cancer Research (AACR)
    Publikationsdatum: 2016
    ZDB Id: 2036785-5
    ZDB Id: 1432-1
    ZDB Id: 410466-3
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...