GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2016
    In:  Clinical Cancer Research Vol. 22, No. 12 ( 2016-06-15), p. 3105-3117
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 22, No. 12 ( 2016-06-15), p. 3105-3117
    Abstract: Purpose: Hepatocellular carcinoma (HCC) lacks effective curative therapy. Hypoxia is commonly found in HCC. Hypoxia elicits a series of protumorigenic responses through hypoxia-inducible factor-1 (HIF1). Better understanding of the metabolic adaptations of HCC cells during hypoxia is essential to the design of new therapeutic regimen. Experimental Design: Expressions of genes involved in the electron transport chain (ETC) in HCC cell lines (20% and 1% O2) and human HCC samples were analyzed by transcriptome sequencing. Expression of NDUFA4L2, a less active subunit in complex I of the ETC, in 100 pairs of HCC and nontumorous liver tissues were analyzed by qRT-PCR. Student t test and Kaplan–Meier analyses were used for clinicopathologic correlation and survival studies. Orthotopic HCC implantation model was used to evaluate the efficiency of HIF inhibitor. Results: NDUFA4L2 was drastically overexpressed in human HCC and induced by hypoxia. NDUFA4L2 overexpression was closely associated with tumor microsatellite formation, absence of tumor encapsulation, and poor overall survival in HCC patients. We confirmed that NDUFA4L2 was HIF1-regulated in HCC cells. Inactivation of HIF1/NDUFA4L2 increased mitochondrial activity and oxygen consumption, resulting in ROS accumulation and apoptosis. Knockdown of NDUFA4L2 markedly suppressed HCC growth and metastasis in vivo. HIF inhibitor, digoxin, significantly suppressed growth of tumors that expressed high level of NDUFA4L2. Conclusions: Our study has provided the first clinical relevance of NDUFA4L2 in human cancer and suggested that HCC patients with NDUFA4L2 overexpression may be suitable candidates for HIF inhibitor treatment. Clin Cancer Res; 22(12); 3105–17. ©2016 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 76, No. 14_Supplement ( 2016-07-15), p. LB-310-LB-310
    Abstract: Background & Aims: Liver is a major metabolic organ, yet the detailed metabolic alterations driving hepatocellular carcinoma (HCC) remain elusive. The rapid growing nature of HCC results in oxygen deprivation or hypoxia in regions of tumors with insufficient blood supply. Hypoxia unbalances the electron flow through the electron transport chain (ETC) resulting in reactive oxygen species (ROS) accumulation. Here we aim at delineating the mechanisms by which HCC evades oxidative stress. Methods: We performed transcriptome sequencing to study the gene expression profile in both HCC patients and HCC cell line. The mRNA expression of 100 paired HCC and corresponding non-tumorous tissues were analyzed. Stable RNAi knockdown by shRNA and genetic knockout by TALEN were established in HCC cells for functional characterization. Results: We demonstrated that HCC cells specifically utilized the mitochondrial protein NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 gene (NDUFA4L2), in the complex I of the ETC, to survive hypoxia. NDUFA4L2 was drastically over-expressed in human HCC and closely associated with poor clinical outcomes in HCC patients. We confirmed that NDUFA4L2 was regulated by HIF-1α in HCC cells. Inactivation of HIF-1α/NDUFA4L2 in different HCC cell lines increased mitochondrial activity and oxygen consumption, resulting in ROS accumulation and ROS-mediated apoptosis in HCC cells. Knockdown of NDUFA4L2 markedly suppressed HCC growth and metastasis in vitro and in vivo. In addition, HIF inhibitors, digoxin and sorafenib, significantly suppressed growth of tumors that expressed high level of NDUFA4L2 in orthotopic HCC model. Conclusions: Our results have unprecedentedly uncovered the clinical relevance and oncogenic roles of NDUFA4L2 in HCC. Citation Format: Robin Kit-Ho Lai, Irix Ming-Jing Xu, David Kung-Chun Chiu, Aki Pui-Wah Tse, Larry Lai Wei, Cheuk-Ting Law, Derek Lee, Chun-Ming Wong, Maria Pik Wong, Irene Oi-Lin Ng, Carmen Chak Lui Wong. NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) reduces oxidative stress to promote hepatocellular carcinoma. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr LB-310.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2016
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Clinical Investigation, American Society for Clinical Investigation, Vol. 127, No. 5 ( 2017-4-10), p. 1856-1872
    Type of Medium: Online Resource
    ISSN: 0021-9738 , 1558-8238
    Language: English
    Publisher: American Society for Clinical Investigation
    Publication Date: 2017
    detail.hit.zdb_id: 2018375-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2017
    In:  Cancer Research Vol. 77, No. 13_Supplement ( 2017-07-01), p. 436-436
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 436-436
    Abstract: Hepatocellular carcinoma (HCC), primary liver cancer, ranks the third most lethal cancer worldwide due to late symptom presentation and lack of promising curative therapy. Metabolic reprogramming has been recognized as a major and new hallmark of cancer in recent years. Better understanding of its underpinning molecular mechanisms favoring cancer growth will be crucial for the development of effective HCC therapeutics. The folate cycle fuels metabolic processes and the production of metabolites essential to cell growth and tumorigenesis maintenance. Through the shuttling of a single carbon unit by a folate derivative through the tetrahydrofolate (THF) backbone in the cytoplasmic and mitochondrial compartments, metabolites like NADPH - a major cellular antioxidant for redox balance, s-adenosyl methionine (SAM) - precursor of DNA and histone methylation, and pyrimidine and purine - the building blocks of DNA are produced. We found folate to be indispensable for HCC cell growth. Furthermore, methylene-THF dehydrogenase 1-like (MTHFD1L), a key enzyme facilitating the folate cycle from the mitochondria, was found to be significantly up-regulated in HCC with association to poorer clinical features for patients. Genetic inhibition of MTHFD1L by knockdown and knockout by shRNA and CRISPR-Cas9 systems, respectively, blocked NADPH production. Rapid elevation in oxidative stress induced DNA damage and cell cycle delay; ultimately inhibiting HCC proliferation. Binding of the transcription factor NRF2, a potent protector of oxidative stress, and MTHFD1L was confirmed by ChIP assay. NRF2 over-expression using the CRISPR-activating system in HCC cells further highlighted the dependent relationship between NRF2 and MTHFD1L. Metabolomics analysis showed that MTHFD1L knockdown caused a disruption to the folate cycle and accumulation of serine. Surprisingly, MTHFD1L knockdown did not reduce the levels of SAM and nucleotides. Knockdown of MTHFD1L in HCC cells significantly inhibited primary liver tumor growth and lung metastasis in orthotopic liver implantation model. Therapeutically, the administration of methotrexate, an anti-folate agent, sensitized HCC cells towards Sorafenib treatment both in vitro and vivo. The folate cycle represents a metabolic vulnerability and attractive therapeutic target for HCC. Inhibition of MTHFD1L disrupts the folate cycle and sensitizes HCC cells towards its convention treatment agent, Sorafenib in various HCC mouse models. Our investigation unravels a metabolic vulnerability in cancer which contributes to better understanding and is beneficial for the development of precise inhibitors specifically targeting associated pathways. Citation Format: Derek Lee, Iris Ming-Jing Xu, David Kung-Chun Chiu, Robin Kit-Ho Lai, Chun-Ming Wong, Irene Oi-Lin Ng, Carmen Chak-Lui Wong. Folate cycle represents a new metabolic vulnerability for hepatocellular carcinoma treatment [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 436. doi:10.1158/1538-7445.AM2017-436
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2019
    In:  Cancer Research Vol. 79, No. 13_Supplement ( 2019-07-01), p. 882-882
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 882-882
    Abstract: Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and third leading cause of cancer deaths worldwide due to late symptom presentation and ineffective treatments. Currently, tyrosine kinase inhibitors Sorafenib and Lenvatinib are the only FDA-approved first-line treatment for HCC patients. Cancer cells experience distinctly high amount of oxidative stress compared to normal cells. Reactive oxygen species (ROS) are by-products of metabolism. However, cancer cells’ metabolic activities are hyper-activated as they have greater demands for energy, thereby also resulting in greater amounts of ROS generated. Besides, oncogenes and properties of the tumor microenvironment like ER stress and hypoxia also contribute to ROS generation in cancer cells. With higher concentrations of ROS, cancer cells also have increased antioxidant production capacity to counteract ROS. NADPH is a major metabolite and antioxidant immensely generated by cancer cells. In human HCC, our group previously found the pentose phosphate pathway and folate cycle to be major metabolic pathways of NADPH production. The thioredoxin system is a ubiquitous mammalian antioxidant system that is activated by the antioxidant system-activating electron donor NADPH. Thioredoxin reductase 1 (TXNRD1) is the sole activating-enzyme of the thioredoxin system through transmission of electron from NADPH to TXN, the ROS-scavenging member of the thioredoxin system. TXNRD1 is imperative for maintenance of intracellular redox homeostasis as confirmed when NRF2 was found to be the transcription activator of TXNRD1. Overexpression of TXNRD1 was found in human HCC with significant correlations with poor clinical prognosis and patient survival. Altogether, these findings are indicative of redox balance being vital for HCC growth. Loss-of-function studies utilizing shRNA-mediated inhibition of TXNRD1 resulted in significant induction of oxidative stress which suppressed HCC growth. The resulting oxidative stress also sensitized HCC cells towards its conventional therapeutic Sorafenib. Translationally, pharmacological TXNRD1 inhibitor auranofin (AUR) also induced oxidative stress which greatly sensitized HCC cells towards Sorafenib. Synergism between AUR and Sorafenib was observed as oxidative stress accumulations dramatically induced apoptosis in vitro and suppressed tumor formation in vivo. Our investigation demonstrated oxidative stress induction through inhibition of the thioredoxin system sensitized HCC cells towards conventional therapeutics. Combination of TXNRD1 inhibitor AUR and Sorafenib represents a novel treatment regimen, with enhanced efficacy, for HCC patients. Citation Format: Derek Lee, Iris Ming-Jing Xu, David Kung-Chun Chiu, Robin Kit-Ho Lai, Chun-Ming Wong, Irene Oi-Lin Ng, Carmen Chak-Lui Wong. Thioredoxin system inhibition using auranofin represents a new therapeutic approach for hepatocellular carcinoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 882.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...