GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Open Chemistry, Walter de Gruyter GmbH, Vol. 21, No. 1 ( 2023-09-19)
    Kurzfassung: Aromatic and medicinal plants in ecosystems are subject to various climatic disturbances that impact their morphological and physiological processes. Although plants have mechanisms to adapt to their climatic conditions, such as periods of drought and lack of precipitation, their metabolism is still affected. This study aimed to predict and evaluate the behavior of Salvia officinalis under climatic disturbances. Over a period of 4 years in a controlled environment, three treatments were applied to the plant: Treatment 1 with normal monthly average temperature and precipitation in the first year; Treatment 2 with a temperature increase of 5°C and a 50% reduction in water supply in the second year; and Treatment 3 with a temperature increase of 10°C and a 75% reduction in water supply in the fourth year. The results show that the percentage of primary metabolites, including nutritional values, changed with increasing temperature and decreasing precipitation. Treatment 1 had 7.13% protein, 6.21% carbohydrate, 1.35% lipid, and 4% dietary fiber, while Treatment 2 had 7.05% protein, 5.12% carbohydrate, 1.01% lipid, and 3.01% dietary fiber, and Treatment 3 had 6.86% protein, 3.02% carbohydrate, 0.52% lipid, and 2.34% dietary fiber. The mineral composition of the plant also changed with each treatment, with Mg decreasing from 10.02 to 8.55 to 0.05%, Fe decreasing from 8.18 to 8 to 7.62%, K decreasing from 5.55 to 5.05 to 4.02%, Mn decreasing from 5.54 to 5.11 to 3.48%, Ca decreasing from 4.65 to 2.75 to 1.23%, and P decreasing from 3.37 to 3.05 to 2.25%. Regarding secondary metabolites, the percentage of alkaloids, flavonoids, saponins, coumarins, tannins, and essential oil yield changed as well. Treatment 2 showed an increase in secondary metabolites, while Treatment 3 showed a decrease. Alkaloids increased from 9.56 to 13.68 to 11.3%, flavonoids increased from 7.53 to 13.48 to 10.49%, saponins increased from 5.23 to 7.44 to 6%, coumarins increased from 3.35 to 4.85 to 3.99%, tannins increased from 2.26 to 3.22 to 2.62%, and essential oil yield increased from 0.53 to 0.80 to 0.62%. Gas chromatography analysis revealed that the major compounds of the essential oils of Salvia officinalis , such as α-thujone, manool, β-caryophyllene, α-humulene, viridiflorol, 1,8-cineol, and camphor, were also modified by temperature and water stress.
    Materialart: Online-Ressource
    ISSN: 2391-5420
    Sprache: Englisch
    Verlag: Walter de Gruyter GmbH
    Publikationsdatum: 2023
    ZDB Id: 2825411-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Sustainability, MDPI AG, Vol. 15, No. 10 ( 2023-05-10), p. 7842-
    Kurzfassung: This study aims to study the impact of environmental stresses on the chemical compositions of essential oils and the content of secondary metabolites of the plants most used by the rural population: Thymus vulgaris, Mentha pulégium and Rosmarinus officinalis. The results of the study indicate that the percentage of secondary metabolites increased in the second year when temperature and water pressure increased by 50%. Specifically, coumarin increased from 3.94% to 9.23%, saponins increased from 6.17% to 7.78%, tannins increased from 2.90% to 6.12%, alkaloids increased from 6.72% to 15.95%, and flavonoids increased from 7.42% to 12.90%. However, in the fourth year, the temperature continued to increase, and water availability decreased by 75%, leading to a decrease in the rate of secondary metabolites. Coumarin decreased from 9.22% to 6.15%, saponin decreased from 7.80% to 6.79%, tannin decreased from 6.11% to 4.16%, alkaloids decreased from 15.95% to 10.45%, and flavonoids decreased from 12.90% to 9.70%. Similar results were observed for the essential oil yield, which increased in year two from 3.57% to 3.84% and decreased in year four to 1.04%. The same pattern was observed for Mentha pulégium and Rosmarinus officinalis. The gas chromatography analysis of the three essential oil samples showed that the majority of the compounds of the three plants were modified under the conditions of climate change. For Mentha pulégium, pulegone was found to represent the highest proportion in sample two (73.3%), followed by sample one (71.1%), and finally, sample three (61.8%). For Rosmarinus officinalis, the majority of compounds were cineole and camphor, with cineole representing 36% in sample two, 45.89% in sample one, and 43.08% in sample three, and camphor representing 21.44% in sample two, 21.56% in sample three, and 17.44% in sample one. For Thymus vulgaris, the majority of the compounds were Thymol and Carvacrol, which underwent approximately the same modifications as the majority of compounds in the other two plants. The results indicate that environmental stresses can lead to significant changes in these compounds, which can affect the medicinal and aromatic properties of these plants. The findings of this study highlight the need for more research to understand the impacts of climate change on plant species and the potential implications for human health and well-being.
    Materialart: Online-Ressource
    ISSN: 2071-1050
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2023
    ZDB Id: 2518383-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Journal of Ecological Engineering, Wydawnictwo Naukowe Gabriel Borowski (WNGB), Vol. 24, No. 5 ( 2023-5-1), p. 237-248
    Materialart: Online-Ressource
    ISSN: 2299-8993
    Sprache: Unbekannt
    Verlag: Wydawnictwo Naukowe Gabriel Borowski (WNGB)
    Publikationsdatum: 2023
    ZDB Id: 2818368-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...