GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Frontiers in Immunology, Frontiers Media SA, Vol. 13 ( 2022-11-8)
    Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating viruses for the global swine industry. Infection during late gestation causes reproductive failure but the local immune response in utero remains poorly understood. In this study, an experimental PRRSV-infection model with two different PRRSV-1 field isolates was used to investigate the immune cell phenotypes at the maternal-fetal interface during late gestation. In addition, phenotypic changes induced by a modified live virus (MLV, ReproCyc ® PRRS EU) vaccine were studied. Vaccinated (n = 12) and non-vaccinated pregnant gilts (n = 12) were challenged with either one of the PRRSV-1 field isolates (low vs. high virulent, LV or HV) or sham-inoculated at day 84 of gestation. Twenty-one days post infection all gilts were euthanized and the fetal preservation status for all fetuses per litter was assessed. Leukocytes from the maternal-fetal interface were isolated and PRRSV-induced changes were investigated using ex vivo phenotyping by flow cytometry. PRRSV load in tissue from the maternal endometrium (ME) and fetal placenta (FP) was determined by RT-qPCR. In the ME, a vast increase in CD8β T cells with CD8α pos CD27 dim early effector phenotype was found for fetuses from the non-vaccinated LV and HV-challenged gilts, compared to non-treated and vaccinated-only controls. HV-challenged fetuses also showed significant increases of lymphocytes with effector phenotypes in the FP, including NKp46 pos NK cells, CD8α high γδ T cells, as well as CD8α pos CD27 pos/dim CD4 and CD8 T cells. In vaccinated animals, this common activation of effector phenotypes was more confined and the fetal preservation status significantly improved. Furthermore, a negative correlation between the viral load and CD163 high CD169 pos mononuclear phagocytic cells was observed in the FP of HV-infected animals. These results suggest that the strong expansion of effector lymphocytes in gilts that were only infected causes immune-pathogenesis rather than protection. In contrast, the attenuated MLV seems to dampen this effect, yet presumably induces memory cells that limit reproductive failure. This work provides valuable insights into changes of local immune cell phenotypes following PRRSV vaccination and infection.
    Type of Medium: Online Resource
    ISSN: 1664-3224
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2606827-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Viruses, MDPI AG, Vol. 14, No. 2 ( 2022-02-05), p. 326-
    Abstract: Linda virus (LindaV) was first identified in a pig farm in Styria, Austria in 2015 and associated with congenital tremor (CT) type A-II in newborn piglets. Since then, only one more LindaV affected farm was retrospectively discovered 10 km away from the initially affected farm. Here, we report the recent outbreak of a novel LindaV strain in a farrow-to-finish farm in the federal state Carinthia, Austria. No connection between this farm and the previously affected farms could be discovered. The outbreak was characterized by severe CT cases in several litters and high preweaning mortality. A herd visit two months after the onset of clinical symptoms followed by a diagnostic workup revealed the presence of several viremic six-week-old nursery pigs. These animals shed large amounts of virus via feces and saliva, implying an important epidemiological role for within- and between-herd virus transmission. The novel LindaV strain was isolated and genetically characterized. The findings underline a low prevalence of LindaV in the Austrian pig population and highlight the threat when introduced into a pig herd. Furthermore, the results urge the need to better understand the routes of persistence and transmission of this enigmatic pestivirus in the pig population.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Viruses, MDPI AG, Vol. 15, No. 1 ( 2023-01-16), p. 258-
    Abstract: The emergence of recombinant PRRSV strains has been observed for more than a decade. These recombinant viruses are characterized by a genome that contains genetic material from at least two different parental strains. Due to the advanced sequencing techniques and a growing number of data bank entries, the role of PRRSV recombinants has become increasingly important since they are sometimes associated with clinical outbreaks. Chimeric viruses observed more recently are products of PRRSV wild-type and vaccine strains. Here, we report on three PRRSV-1 isolates from geographically distant farms with differing clinical manifestations. A sequencing and recombination analysis revealed that these strains are crossovers between different wild-type strains and the same modified live virus vaccine strain. Interestingly, the recombination breakpoint of all analyzed isolates appears at the beginning of open reading frame 5 (ORF5). RNA structure predictions indicate a conserved stem loop in close proximity to the recombination hotspot, which is a plausible cause of a polymerase template switch during RNA replication. Further research into the mechanisms of the stem loop is needed to help understand the PRRSV recombination process and the role of MLVs as parental strains.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Viruses, MDPI AG, Vol. 11, No. 11 ( 2019-10-23), p. 975-
    Abstract: The novel pestivirus species known as lateral-shaking inducing neuro-degenerative agent (LINDA) virus emerged in 2015 in a piglet-producing farm in Austria. Affected piglets showed strong congenital tremor as a result of severe lesions in the central nervous system. Here, we report the results of a controlled animal infection experiment. Post-weaning piglets were infected with LINDA to determine the susceptibility of pigs, the clinical consequences of infection and the humoral immune response against LINDA. No clinically overt disease signs were observed in the piglets. Viremia was hardly detectable, but LINDA was present in the spleen and several lymphatic organs until the end of the experiment on day 28 post-infection. Oronasal virus shedding together with the infection of one sentinel animal provided additional evidence for the successful replication and spread of LINDA in the piglets. Starting on day 14 post-infection, all infected animals showed a strong humoral immune response with high titers of neutralizing antibodies against LINDA. No cross-neutralizing activity of these sera with other pestiviral species was observed. According to these data, following postnatal infection, LINDA is a rather benign virus that can be controlled by the pig’s immune system. However, further studies are needed to investigate the effects of LINDA on the fetus after intrauterine infection.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Viruses, MDPI AG, Vol. 13, No. 6 ( 2021-05-27), p. 1001-
    Abstract: A novel pestivirus species, termed Lateral-shaking Inducing Neuro-Degenerative Agent virus (LindaV), was discovered in a piglet-producing farm in Austria in 2015 related to severe congenital tremor cases. Since the initial outbreak LindaV has not been found anywhere else. In this study, we determined the seroprevalence of LindaV infections in the domestic pig population of Austria. A fluorophore labeled infectious cDNA clone of LindaV (mCherry-LindaV) was generated and used in serum virus neutralization (SVN) assays for the detection of LindaV specific neutralizing antibodies in porcine serum samples. In total, 637 sera from sows and gilts from five federal states of Austria, collected between the years 2015 and 2020, were analyzed. We identified a single serum showing a high neutralizing antibody titer, that originated from a farm (Farm S2) in the proximity of the initially affected farm. The analysis of 57 additional sera from Farm S2 revealed a wider spread of LindaV in this pig herd. Furthermore, a second LindaV strain originating from this farm could be isolated in cell culture and was further characterized at the genetic level. Possible transmission routes and virus reservoir hosts of this emerging porcine virus need to be addressed in future studies.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Viruses, MDPI AG, Vol. 14, No. 9 ( 2022-08-26), p. 1891-
    Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most relevant porcine pathogens worldwide. Active control of the disease relies on modified live virus vaccines (MLVs), as most inactivated vaccines provide very limited protection. Neutralizing antibodies occur late in infection; therefore, CD8+ T cells are considered important correlates of protection and are a frequent focus of investigation. Our aim was to identify viral peptides naturally bound by the class I major histocompatibility complex (MHC-I) and to confirm their ability to stimulate CD8+ T cells. For this purpose, we immunoprecipitated MHC-I/peptide complexes of PRRSV (strain AUT15-33) -infected cells (SLA-I Lr-Hp 35.0/24 mod) to isolate the viral epitopes and analyzed them with liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Furthermore, we employed these identified peptides to stimulate peripheral blood mononuclear cells (PBMCs) of previously PRRSV-infected pigs and measured the PRRSV-specific CD8+ T-cell response with an intracellular cytokine staining (ICS). Our data revealed that PRRSV non-structural proteins (NSPs), encoded in open reading frame 1a and 1b (ORF1), present the major source of MHC-I-presented peptides. Additionally, we show that our identified epitopes are able to trigger IFNγ responses in vitro. These findings are a basis for understanding the proteasomal degradation of PRRSV proteins, the cellular ability to display them via MHC-I, and their potential to restimulate CD8+ T cells.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...