GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (1)
  • Kuroki, Yoshio  (1)
  • Biology  (1)
Material
Publisher
  • Proceedings of the National Academy of Sciences  (1)
Language
Years
Subjects(RVK)
RVK
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 12 ( 2013-03-19), p. 4714-4719
    Abstract: Although endogenous ligands for Toll-like receptor (TLR)4–myeloid differentiation factor 2 (MD2) have not been well-understood, we here report that a globo-series glycosphingolipid, globotetraosylceramide (Gb4), attenuates the toxicity of lipopolysaccharides (LPSs) by binding to TLR4–MD-2. Because α1,4-galactosyltransferase (A4galt)-deficient mice lacking globo-series glycosphingolipids showed higher sensitivity to LPS than wild-type mice, we examined mechanisms by which globo-series glycosphingolipids attenuate LPS toxicity. Cultured endothelial cells lacking A4galt showed higher expression of LPS-inducible genes upon LPS treatment. In turn, introduction of A4galt cDNA resulted in the neo expression of Gb4, leading to the reduced expression of LPS-inducible genes. Exogenous Gb4 induced similar effects. As a mechanism for the suppressive effects of Gb4 on LPS signals, specific binding of Gb4 to the LPS receptor TLR4–MD-2 was demonstrated by coprecipitation of Gb4 with recombinant MD-2 and by native PAGE. A docking model also supported these data. Taken together with colocalization of TLR4–MD-2 with Gb4 in lipid rafts after LPS stimulation, it was suggested that Gb4 competes with LPS for binding to TLR4–MD-2. Finally, administration of Gb4 significantly protected mice from LPS-elicited mortality. These results suggest that Gb4 is an endogenous ligand for TLR4–MD-2 and is capable of attenuating LPS toxicity, indicating the possibility for its therapeutic application in endotoxin shock.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...