GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Kumar, Ranjan  (2)
  • 1
    In: Journal of Neurosurgery, Journal of Neurosurgery Publishing Group (JNSPG), Vol. 130, No. 1 ( 2018-01), p. 163-171
    Abstract: Intravital spectral imaging of the large, deeply situated nerves in the rat peripheral nervous system (PNS) has not been well described. Here, the authors have developed a highly stable platform for performing imaging of the tibial nerve in live rodents, thus allowing the capture of high-resolution, high-magnification spectral images requiring long acquisition times. By further exploiting the qualities of the topically applied myelin dye Nile red, this technique is capable of visualizing the detailed microenvironment of peripheral nerve demyelination injury and recovery, while allowing us to obtain images of exogenous Schwann cell myelination in a living animal. METHODS The authors caused doxorubicin-induced focal demyelination in the tibial nerves of 25 Thy-1 GFP rats, of which 2 subsets (n = 10 each) received either BFP-labeled SKP-SCs or SCs to the zone of injury. Prior to acquiring images of myelin recovery in these nerves, a tibial nerve window was constructed using a silicone hemitube, a fast drying silicone polymer, and a small coverslip. This construct was then affixed to a 3D-printed nerve stage, which in turn was affixed to an external fixation/microscope stage device. Myelin visualization was facilitated by the topical application of Nile red. RESULTS The authors reliably demonstrated intravital peripheral nerve myelin imaging with micron-level resolution and magnification, and minimal movement artifact. The detailed microenvironment of nerve remyelination can be vividly observed, while exogenously applied Schwann cells and skin-derived precursor Schwann cells can be seen myelinating axons. CONCLUSIONS Topically applied Nile red enables intravital study of myelin in the living rat PNS. Furthermore, the use of a tibial nerve window facilitates stable intravital peripheral nerve imaging, making possible high-definition spectral imaging with long acquisition times.
    Type of Medium: Online Resource
    ISSN: 0022-3085 , 1933-0693
    RVK:
    RVK:
    Language: Unknown
    Publisher: Journal of Neurosurgery Publishing Group (JNSPG)
    Publication Date: 2018
    detail.hit.zdb_id: 2026156-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cells, MDPI AG, Vol. 9, No. 1 ( 2020-01-11), p. 189-
    Abstract: Background: Myelin is an essential component of the peripheral and central nervous system, enabling fast axonal conduction and supporting axonal integrity; limited tools exist for analysis of myelin composition in-vivo. Objective: To demonstrate that the photophysical properties of myelin-incorporated solvatochromic dyes can be exploited to probe the biochemical composition of living peripheral nerve myelin at high spatial resolution. Methods: Using the myelin-incorporated fluorescent dye Nile Red we sequentially analyzed the spectral characteristics of remyelinating myelin membranes both in-vitro and in-vivo, including in living rats. Results: We demonstrated a consistent bi-phasic evolution of emission spectra during early remyelination, and visually report the reliable biochemical flux of myelin membrane composition in-vitro and in-vivo. Conclusions: Solvatochromic spectroscopy enables the analysis of myelin membrane maturity during remyelination, and can be performed in-vivo. As the formation of myelin during early-to-late remyelination likely incorporates fluctuating fractions of lipophilic components and changes in lateral membrane mobility, we propose that our spectrochemical data reflects the observation of these biochemical processes.
    Type of Medium: Online Resource
    ISSN: 2073-4409
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2661518-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...