GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • IOP Publishing  (8)
  • Kuang, Zhonghua  (8)
  • Sang, Ziru  (8)
Material
Publisher
  • IOP Publishing  (8)
Language
Years
Subjects(RVK)
  • 1
    In: Physics in Medicine & Biology, IOP Publishing, Vol. 68, No. 2 ( 2023-01-21), p. 025021-
    Abstract: Objective. Dual-modality small animal PET/MR imaging provides temporally correlated information on two biochemical processes of a living object. An magnetic resonance imaging (MRI)-compatible small animal PET insert named Shenzhen Institutes of Advanced Technology (SIAT) aPET was developed by using dual-ended readout depth encoding detectors to simultaneously achieve a uniform high spatial resolution and high sensitivity at the SIAT. In this work, the mutual interferences between SIAT aPET and the 3 T uMR 790 MRI scanner of United Imaging was quantitatively evaluated. Approach. To minimize the mutual interferences, only the PET detectors and the readout electronics were placed inside the MRI scanner, the major signal processing electronic was placed in the corner of the MRI room and the auxiliary unit was placed in the MRI technical room. A dedicated mouse radio fRequency (RF) coil with a transmitter and receiver was developed for the PET insert. The effects of PET scanner on the B 0 and B 1 field of the MRI scanner and the quality of the MRI images were measured. The effects of MRI imaging on the performance of both the PET detectors and scanner were also measured. Main results. The electronic and mechanical components of the PET insert affected the homogeneity of the B 0 field. The PET insert had no effect on the homogeneity of B 1 produced by the dedicated mouse coil but slightly reduced the strength of B 1 . The mean and standard deviation of the RF noise map were increased by 2.2% and 11.6%, respectively, while the PET insert was placed in the MRI scanner and powered on. Eddy current was produced while the PET insert was placed in the MRI scanner, and it was further increased while the PET insert was powered on. Despite the above-mentioned interferences from the PET insert, the MR images of a uniform cylindrical water phantom showed that the changes in the signal-to-noise ratio (SNR) and homogeneity as the PET insert was placed in the MRI scanner were acceptable regardless of whether the PET insert was powered off or powered on. The maximum reduction of SNR was less than 11%, and the maximum reduction of homogeneity was less than 2.5% while the PET insert was placed inside the MRI scanner and powered on for five commonly used MRI sequences. MRI using gradient echo (GRE), spin echo (SE) and fast spin echo (FSE) sequences had negligible effects on the flood histograms and energy resolution of the PET detectors, as well as the spatial resolution and sensitivity of the PET scanner. Significance. The mutual interference between the SIAT aPET and the 3 T uMR 790 MRI scanner are acceptable. Simultaneous PET/MRI imaging of small animals can be performed with the two scanners.
    Type of Medium: Online Resource
    ISSN: 0031-9155 , 1361-6560
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 1473501-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Physics in Medicine & Biology, IOP Publishing, Vol. 64, No. 8 ( 2019-04-10), p. 085012-
    Type of Medium: Online Resource
    ISSN: 1361-6560
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2019
    detail.hit.zdb_id: 1473501-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    IOP Publishing ; 2023
    In:  Physics in Medicine & Biology Vol. 68, No. 6 ( 2023-03-21), p. 065010-
    In: Physics in Medicine & Biology, IOP Publishing, Vol. 68, No. 6 ( 2023-03-21), p. 065010-
    Abstract: Objective . Small-animal positron emission tomography (PET) is a powerful preclinical imaging tool in animal model studies. The spatial resolution and sensitivity of current PET scanners developed for small-animal imaging need to be improved to increase the quantitative accuracy of preclinical animal studies. This study aimed to improve the identification capability of edge scintillator crystals of a PET detector which will enable to apply a crystal array with the same cross-section area as the active area of a photodetector for improving the detection area and thus reducing or eliminating the inter-detector gaps. Approach . PET detectors using crystal arrays with mixed lutetium yttrium orthosilicate (LYSO) and gadolinium aluminum gallium garnet (GAGG) crystals were developed and evaluated. The crystal arrays consisted of 31 × 31 array of 0.49 × 0.49 × 20 mm 3 crystals; they were read out by two silicon photomultiplier arrays with pixel sizes of 2 × 2 mm 2 that were placed at both ends of the crystal arrays. The second or first outermost layer of the LYSO crystals was replaced by GAGG crystals in the two crystal arrays. The two crystal types were identified using a pulse-shape discrimination technique to provide better edge crystal identification. Main results . Using the pulse shape discrimination technique, almost all (except for a few edge) crystals were resolved in the two detectors; high sensitivity was achieved by using the scintillator array and the photodetector with the same areas and achieved high resolution by using crystals with sizes equal to 0.49 × 0.49 × 20 mm 3 . Energy resolutions of 19.3 ± 1.8% and 18.9 ± 1.5%, depth-of-interaction resolutions of 2.02 ± 0.17 mm and 2.04 ± 0.18 mm, and timing resolutions of 1.6 ± 0.2 ns and 1.5 ± 0.2 ns were achieved by the two detectors, respectively. Significance . In summary, novel three-dimensional high-resolution PET detectors consisting of a mixture of LYSO and GAGG crystals were developed. The detectors significantly improve the detection area with the same photodetectors and thus improve the detection efficiency.
    Type of Medium: Online Resource
    ISSN: 0031-9155 , 1361-6560
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2023
    detail.hit.zdb_id: 1473501-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Physics in Medicine & Biology, IOP Publishing, Vol. 66, No. 6 ( 2021-03-21), p. 065023-
    Abstract: Both monolithic and semi-monolithic scintillator positron emission tomography (PET) detectors can measure the depth of interaction with single-ended readout. Usually scintillators with a thickness of 10 mm or less are used since the position resolutions of the detectors degrade as the scintillator thickness increases. In this work, the performance of a 20 mm thick long rectangular semi-monolithic scintillator PET detector was measured by using both single-ended and dual-ended readouts with silicon photomultiplier (SiPM) arrays to provide a high detection efficiency. The semi-monolithic scintillator detector consists of nine lutetium–yttrium oxyorthosilicate slices measuring 1.37 × 51.2 × 20 mm 3 with erythrocyte sedimentation rate foils of 0.065 mm thickness in between the slices. The SiPM array at each end of the scintillator detector consists of 16 × 4 SiPMs with a pixel size of 3.0 × 3.0 mm 2 and a pitch of 3.2 mm. The 64 signals of each SiPM array are processed by using the TOFPET2 application-specific integrated circuit individually. All but the edge slices can be clearly resolved for the detectors with both single-ended and dual-ended readouts. The single-ended readout detector provides an average full width at half maximum (FWHM) Y (continuous direction) position resolution of 2.43 mm, Z (depth direction) position resolution of 4.77 mm, energy resolution of 25.7% and timing resolution of 779 ps. The dual-ended readout detector significantly improves the Y and Z position resolutions, slightly improves the energy and timing resolution at the cost of two photodetectors required for one detector module and provides an average FWHM Y position resolution of 1.97 mm, Z position resolution of 2.60 mm, energy resolution of 21.7% and timing resolution of 718 ps. The energy and timing resolution of the semi-monolithic scintillator detector in this work are worse than those of the segmented scintillator array detector and need to be further improved. The semi-monolithic scintillator detector described in this work reduces costs as compared to the traditional segmented scintillator array detector and reduces the edge effect as compared to the monolithic scintillator detector.
    Type of Medium: Online Resource
    ISSN: 0031-9155 , 1361-6560
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2021
    detail.hit.zdb_id: 1473501-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Physics in Medicine & Biology, IOP Publishing, Vol. 63, No. 4 ( 2018-02-13), p. 045009-
    Type of Medium: Online Resource
    ISSN: 1361-6560
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2018
    detail.hit.zdb_id: 1473501-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Physics in Medicine & Biology, IOP Publishing, Vol. 62, No. 19 ( 2017-09-21), p. 7889-7904
    Type of Medium: Online Resource
    ISSN: 1361-6560
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 1473501-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Physics in Medicine & Biology, IOP Publishing, Vol. 65, No. 24 ( 2020-12-21), p. 245007-
    Abstract: In this work, a GPU-accelerated fully 3D ordered-subset expectation maximization (OSEM) image reconstruction with point spread function (PSF) modeling was developed for a small animal PET scanner with a long axial field of view (FOV). Dual-ended readout detectors that provided high depth of interaction (DOI) resolution were used for the small animal PET scanner to simultaneously achieve uniform high spatial resolution and high sensitivity. First, we developed a novel sinogram generation method, in which the dimension of the sinogram was determined first and then an event was assigned to a few neighboring sinogram elements by using weights that are inversely proportional to the distance from the measured line of response (LOR) to the LOR of the sinogram elements. System geometric symmetry, precomputation of LOR-driven ray-tracing and texture memory were applied to accelerate the GPU-based reconstruction. We developed a spatially variant PSF model where the PSF parameters were obtained by using point source images measured at 18 positions in the FOV and a spatial invariant PSF model where the PSF parameters were obtained by using only one image measured at the center FOV. The performance of the image reconstruction method was evaluated by using simulated phantom data as well as phantom and in-vivo mouse data acquired on the scanner. The results showed that the proposed reconstruction method provided better spatial resolution, a higher contrast recovery coefficient and lower noise than the OSEM reconstruction and was more than 1000 times faster than the CPU-based reconstruction. The spatially variant PSF model did not result in any spatial resolution improvement compared to the spatial invariant PSF model, and thus, the latter that is much easier to implement in image reconstruction and can be used in a small animal PET scanner using detectors with very high DOI resolution. A whole body 18 F-FDG mouse image with high resolution and a high contrast to noise ratio was obtained by using the proposed reconstruction method.
    Type of Medium: Online Resource
    ISSN: 0031-9155 , 1361-6560
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 1473501-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Physics in Medicine & Biology, IOP Publishing, Vol. 65, No. 23 ( 2020-12-07), p. 235013-
    Abstract: In this work, a small animal PET scanner named SIAT aPET was developed using dual-ended readout depth encoding detectors to simultaneously achieve high spatial resolution and high sensitivity. The scanner consists of four detector rings with 12 detector modules per ring; the ring diameter is 111 mm and the axial field of view (FOV) is 105.6 mm. The images are reconstructed using an ordered subset expectation maximization (OSEM) algorithm. The spatial resolution of the scanner was measured by using a 22 Na point source at the center axial FOV with different radial offsets. The sensitivity of the scanner was measured at center axis of the scanner with different axial positions. The count rate performance of the system was evaluated by scanning mouse-sized and rat-sized phantoms. An ultra-micro hot-rods phantom and two mice injected with 18 F-NaF and 18 F-FDG were scanned on the scanner. An average depth of interaction (DOI) resolution of 1.96 mm, energy resolution of 19.1% and timing resolution of 1.20 ns were obtained for the detector. Average spatial resolutions of 0.82 mm and 1.16 mm were obtained up to a distance of 30 mm radially from the center of the FOV when reconstructing a point source in 1% and 10% warm backgrounds, respectively, using OSEM reconstruction with 16 subsets and 10 iterations. Sensitivities of 16.0% and 11.9% were achieved at center of the scanner for energy windows of 250–750 keV and 350–750 keV respectively. Peak noise equivalent count rates (NECRs) of 324 kcps and 144 kcps were obtained at an activity of 26.4 MBq for the mouse-sized and rat-sized phantoms. Rods of 1.0 mm diameter can be visually resolved from the image of the ultra-micro hot-rods phantom. The capability of the scanner was demonstrated by high quality in-vivo mouse images.
    Type of Medium: Online Resource
    ISSN: 0031-9155 , 1361-6560
    RVK:
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 1473501-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...