GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Acta Neuropathologica Vol. 132, No. 4 ( 2016-10), p. 563-576
    In: Acta Neuropathologica, Springer Science and Business Media LLC, Vol. 132, No. 4 ( 2016-10), p. 563-576
    Type of Medium: Online Resource
    ISSN: 0001-6322 , 1432-0533
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 1458410-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 44 ( 2022-11)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 44 ( 2022-11)
    Abstract: Stress granules (SGs) are cytoplasmic biomolecular condensates containing proteins and RNAs in response to stress. Ras-GTPase–activating protein binding protein 1 (G3BP1) is a core SG protein. Caprin-1 and ubiquitin specific peptidase 10 (USP10) interact with G3BP1, facilitating and suppressing SG formation, respectively. The crystal structures of the nuclear transport factor 2-like (NTF2L) domain of G3BP1 in complex with the G3BP1-interacting motif (GIM) of Caprin-1 and USP10 show that both GIMs bind to the same hydrophobic pocket of G3BP1. Moreover, both GIMs suppressed the liquid–liquid phase separation (LLPS) of G3BP1, suggesting that Caprin-1 likely facilitates SG formation via other mechanisms. Thus, we dissected various domains of Caprin-1 and investigated their role in LLPS in vitro and SG formation in cells. The C-terminal domain of Caprin-1 underwent spontaneous LLPS, whereas the N-terminal domain and GIM of Caprin-1 suppressed LLPS of G3BP1. The opposing effect of the N- and C-terminal domains of Caprin-1 on SG formation were demonstrated in cells with or without the endogenous Caprin-1. We propose that the N- and C-terminal domains of Caprin-1 regulate SG formation in a “yin and yang” fashion, mediating the dynamic and reversible assembly of SGs.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2016
    In:  Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease Vol. 1862, No. 10 ( 2016-10), p. 2004-2014
    In: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, Elsevier BV, Vol. 1862, No. 10 ( 2016-10), p. 2004-2014
    Type of Medium: Online Resource
    ISSN: 0925-4439
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 2209528-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Glia, Wiley, Vol. 68, No. 10 ( 2020-10), p. 2040-2056
    Abstract: Fused in sarcoma (FUS) is a predominantly nuclear multifunctional RNA/DNA‐binding protein that regulates multiple aspects of gene expression. FUS mutations are associated with familial amyotrophic lateral sclerosis (fALS) and frontotemporal lobe degeneration (FTLD) in humans. At the molecular level, the mutated FUS protein is reduced in the nucleus but accumulates in cytoplasmic granules. Oligodendrocytes (OL) carrying clinically relevant FUS mutations contribute to non‐cell autonomous motor neuron disease progression, consistent with an extrinsic mechanism of disease mediated by OL. Knocking out FUS globally or in neurons lead to behavioral abnormalities that are similar to those present in FTLD. In this study, we sought to investigate whether an extrinsic mechanism mediated by loss of FUS function in OL contributes to the behavioral phenotype. We have generated a novel conditional knockout (cKO) in which Fus is selectively depleted in OL ( Fus OL cKO). The Fus OL cKO mice show increased novelty‐induced motor activity and enhanced exploratory behavior, which are reminiscent of some manifestations of FTLD. The phenotypes are associated with greater myelin thickness, higher number of myelinated small diameter axons without an increase in the number of mature OL. The expression of the rate‐limiting enzyme of cholesterol biosynthesis (HMGCR) is increased in white matter tracts of the Fus OL cKO and results in higher cholesterol content. In addition, phosphorylation of Akt, an important regulator of myelination is increased in the Fus OL cKO. Collectively, this work has uncovered a novel role of oligodendrocytic Fus in regulating myelin deposition through activation of Akt and cholesterol biosynthesis.
    Type of Medium: Online Resource
    ISSN: 0894-1491 , 1098-1136
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 1474828-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Human Molecular Genetics Vol. 29, No. 16 ( 2020-09-29), p. 2684-2697
    In: Human Molecular Genetics, Oxford University Press (OUP), Vol. 29, No. 16 ( 2020-09-29), p. 2684-2697
    Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the preferential death of motor neurons. Approximately 10% of ALS cases are familial and 90% are sporadic. Fused in sarcoma (FUS) is a ubiquitously expressed RNA-binding protein implicated in familial ALS and frontotemporal dementia (FTD). The physiological function and pathological mechanism of FUS are not well understood, particularly whether post-translational modifications play a role in regulating FUS function. In this study, we discovered that FUS was acetylated at lysine-315/316 (K315/K316) and lysine-510 (K510) residues in two distinct domains. Located in the nuclear localization sequence, K510 acetylation disrupted the interaction between FUS and Transportin-1, resulting in the mislocalization of FUS in the cytoplasm and formation of stress granule-like inclusions. Located in the RNA recognition motif, K315/K316 acetylation reduced RNA binding to FUS and decreased the formation of cytoplasmic inclusions. Treatment with deacetylase inhibitors also significantly reduced the inclusion formation in cells expressing ALS mutation P525L. More interestingly, familial ALS patient fibroblasts showed higher levels of FUS K510 acetylation as compared with healthy controls. Lastly, CREB-binding protein/p300 acetylated FUS, whereas both sirtuins and histone deacetylases families of lysine deacetylases contributed to FUS deacetylation. These findings demonstrate that FUS acetylation regulates the RNA binding, subcellular localization and inclusion formation of FUS, implicating a potential role of acetylation in the pathophysiological process leading to FUS-mediated ALS/FTD.
    Type of Medium: Online Resource
    ISSN: 0964-6906 , 1460-2083
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1474816-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Wiley ; 2021
    In:  Journal of Neurochemistry Vol. 157, No. 3 ( 2021-05), p. 752-763
    In: Journal of Neurochemistry, Wiley, Vol. 157, No. 3 ( 2021-05), p. 752-763
    Abstract: Fused in sarcoma (FUS) is a ubiquitously expressed RNA/DNA‐binding protein that plays different roles in the cell. FUS pathology has been reported in neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Mutations in FUS have also been linked to a subset of familial ALS. FUS is mainly localized in the nucleus although it shuttles between the nucleus and the cytoplasm. ALS‐linked mutations cause the accumulation of the FUS protein in cytoplasm where it forms stress granule‐like inclusions. The protein‐ and RNA‐containing inclusions are reported to be positive of autophagosome markers and degraded by the autophagy pathway. However, the role of FUS in the autophagy pathway remains to be better understood. Using immunoblot and confocal imaging techniques in this study, we found that FUS knockout (KO) cells showed a decreased basal autophagy level. Rapamycin and bafilomycin A1 treatment showed that FUS KO cells were not able to initiate autophagy as efficiently as wild‐type cells, suggesting that the autophagosome formation is affected in the absence of FUS. Moreover, using immunoblot and quantitative PCR techniques, we found that the mRNA and protein levels of the genes critical in the initial steps of the autophagy pathway (FIP200, ATG16L1 and ATG12) were significantly lower in FUS KO cells. Re‐expressing FUS in the KO cells restored the expression of FIP200 and ATG16L1. Our findings demonstrate a novel role of FUS in the autophagy pathway, that is, regulating the transcription of genes involved in early stages of autophagy such as the initiation and elongation of autophagosomes. image
    Type of Medium: Online Resource
    ISSN: 0022-3042 , 1471-4159
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 2020528-4
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 51 ( 2018-12-18)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 51 ( 2018-12-18)
    Abstract: Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by preferential motor neuron death. Approximately 15% of ALS cases are familial, and mutations in the fused in sarcoma ( FUS ) gene contribute to a subset of familial ALS cases. FUS is a multifunctional protein participating in many RNA metabolism pathways. ALS-linked mutations cause a liquid–liquid phase separation of FUS protein in vitro, inducing the formation of cytoplasmic granules and inclusions. However, it remains elusive what other proteins are sequestered into the inclusions and how such a process leads to neuronal dysfunction and degeneration. In this study, we developed a protocol to isolate the dynamic mutant FUS-positive cytoplasmic granules. Proteomic identification of the protein composition and subsequent pathway analysis led us to hypothesize that mutant FUS can interfere with protein translation. We demonstrated that the ALS mutations in FUS indeed suppressed protein translation in N2a cells expressing mutant FUS and fibroblast cells derived from FUS ALS cases. In addition, the nonsense-mediated decay (NMD) pathway, which is closely related to protein translation, was altered by mutant FUS. Specifically, NMD-promoting factors UPF1 and UPF3b increased, whereas a negative NMD regulator, UPF3a, decreased, leading to the disruption of NMD autoregulation and the hyperactivation of NMD. Alterations in NMD factors and elevated activity were also observed in the fibroblast cells of FUS ALS cases. We conclude that mutant FUS suppresses protein biosynthesis and disrupts NMD regulation, both of which likely contribute to motor neuron death.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Neurology Genetics, Ovid Technologies (Wolters Kluwer Health), Vol. 3, No. 4 ( 2017-08), p. e172-
    Abstract: To describe the clinical features of a novel fused in sarcoma (FUS) mutation in a young adult female amyotrophic lateral sclerosis (ALS) patient with rapid progression of weakness and to experimentally validate the consequences of the P525R mutation in cellular neuronal models. Methods: We conducted sequencing of genomic DNA from the index patient and her family members. Immunocytochemistry was performed in various cellular models to determine whether the newly identified P525R mutant FUS protein accumulated in cytoplasmic inclusions. Clinical features of the index patient were compared with 19 other patients with ALS carrying the P525L mutation in the same amino acid position. Results: A novel mutation c.1574C 〉 G (p.525P 〉 R) in the FUS gene was identified in the index patient. The clinical symptoms are similar to those in familial ALS patients with the P525L mutation at the same position. The P525R mutant FUS protein showed cytoplasmic localization and formed large stress granule–like cytoplasmic inclusions in multiple cellular models. Conclusions: The clinical features of the patient and the cytoplasmic inclusions of the P525R mutant FUS protein strengthen the notion that mutations at position 525 of the FUS protein result in a coherent phenotype characterized by juvenile or young adult onset, rapid progression, variable positive family history, and female preponderance.
    Type of Medium: Online Resource
    ISSN: 2376-7839
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2017
    detail.hit.zdb_id: 2818607-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Human Molecular Genetics Vol. 29, No. 4 ( 2020-03-13), p. 624-634
    In: Human Molecular Genetics, Oxford University Press (OUP), Vol. 29, No. 4 ( 2020-03-13), p. 624-634
    Abstract: Frontotemporal dementia (FTD) is an early onset dementia characterized by progressive atrophy of the frontal and/or temporal lobes. FTD is highly heritable with mutations in progranulin accounting for 5–26% of cases in different populations. Progranulin is involved in endocytosis, secretion and lysosomal processes, but its functions under physiological and pathological conditions remains to be defined. Many FTD-causing non-sense progranulin mutations contain a premature termination codon (PTC), thus progranulin haploinsufficiency has been proposed as a major disease mechanism. Currently, there is no effective FTD treatment or therapy. Aminoglycosides are a class of antibiotics that possess a less-known function to induce eukaryotic ribosomal readthrough of PTCs to produce a full-length protein. The aminoglycoside-induced readthrough strategy has been utilized to treat multiple human diseases caused by PTCs. In this study, we tested the only clinically approved readthrough small molecule PTC124 and 11 aminoglycosides in a cell culture system on four PTCs responsible for FTD or a related neurodegenerative disease amyotrophic lateral sclerosis. We found that the aminoglycosides G418 and gentamicin rescued the expression of the progranulin R493X mutation. G418 was more effective than gentamicin (~50% rescue versus & lt;10%), and the effect was dose- and time-dependent. The progranulin readthrough protein displayed similar subcellular localization as the wild-type progranulin protein. These data provide an exciting proof-of-concept that aminoglycosides or other readthrough-promoting compounds are a therapeutic avenue for familial FTD caused by progranulin PTC mutations.
    Type of Medium: Online Resource
    ISSN: 0964-6906 , 1460-2083
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 1474816-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...