GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-07-30)
    Abstract: Cardiac amyloidosis (CA) is an infiltrative disease. In the present study, we compared the diagnostic accuracy of cardiovascular magnetic resonance (CMR)-based T1-mapping and subsequent extracellular volume fraction (ECV) measurement and longitudinal strain analysis in the same patients with (a) biopsy-proven cardiac amyloidosis (CA) and (b) hypertrophic cardiomyopathy (HCM). N  = 30 patients with CA, N  = 20 patients with HCM and N  = 15 healthy control patients without relevant cardiac disease underwent dedicated CMR studies. The CMR protocol included standard sequences for cine-imaging, native and post-contrast T1-mapping and late-gadolinium-enhancement. ECV measurements were based on pre- and post-contrast T1-mapping images. Feature-tracking analysis was used to calculate 3D left ventricular longitudinal strain (LV-LS) in basal, mid and apical short-axis cine-images and to assess the presence of relative apical sparing. Receiver-operating-characteristic analysis revealed an area-under-the-curve regarding the differentiation of CA from HCM of 0.984 for native T1-mapping ( p   〈  0.001), of 0.985 for ECV ( p   〈  0.001) and only 0.740 for the “apical-to-(basal + midventricular)”-ratio of LV-LS ( p  = 0.012). A multivariable logistical regression analysis showed that ECV was the only statistically significant predictor of CA when compared to the parameter LV-LS or to the parameter “apical-to-(basal + midventricular)” LV-RLS-ratio. Native T1-mapping and ECV measurement are both superior to longitudinal strain measurement (with assessment of relative apical sparing) regarding the appropriate diagnosis of CA.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Clinical Research in Cardiology, Springer Science and Business Media LLC, Vol. 110, No. 1 ( 2021-01), p. 136-145
    Abstract: Coronary microvascular dysfunction (CMD) is present in various non-ischemic cardiomyopathies and in particular in those with left-ventricular hypertrophy. This study evaluated the diagnostic value of the novel cardiovascular magnetic resonance (CMR) parameter “myocardial transit-time” (MyoTT) in distinguishing cardiac amyloidosis from other hypertrophic cardiomyopathies. Methods N =  20 patients with biopsy-proven cardiac amyloidosis (CA), N =  20 patients with known hypertrophic cardiomyopathy (HCM), and N =  20 control patients without relevant cardiac disease underwent dedicated CMR studies on a 1.5-T MR scanner. The CMR protocol comprised cine and late-gadolinium-enhancement (LGE) imaging as well as first-pass perfusion acquisitions at rest for MyoTT measurement. MyoTT was defined as the blood circulation time from the orifice of the coronary arteries to the pooling in the coronary sinus (CS) reflecting the transit-time of gadolinium in the myocardial microvasculature. Results MyoTT was significantly prolonged in patients with CA compared to both groups: 14.8 ± 4.1 s in CA vs. 12.2 ± 2.5 s in HCM ( p =  0.043) vs. 7.2 ± 2.6 s in controls ( p   〈  0.001). Native T1 and extracellular volume (ECV) were significantly higher in CA compared to HCM and controls ( p   〈  0.001). Both parameters were associated with a higher diagnostic accuracy in predicting the presence of CA compared to MyoTT: area under the curve (AUC) for native T1 = 0.93 (95% confidence interval (CI) = 0.83–1.00; p   〈  0.001) and AUC for ECV = 0.95 (95% CI = 0.88–1.00; p   〈  0.001)—compared to the AUC for MyoTT = 0.76 (95% CI = 0.60–0.92; p =  0.008). In contrast, MyoTT performed better than all other CMR parameters in differentiating HCM from controls (AUC for MyoTT = 0.93; 95% CI = 0.81–1.00; p =  0.003 vs. AUC for native T1 = 0.69; 95% CI = 0.44–0.93; p =  0.20 vs. AUC for ECV = 0.85; 95% CI = 0.66–1.00; p =  0.017). Conclusion The relative severity of CMD (measured by MyoTT) in relationship to extracellular changes (measured by native T1 and/or ECV) is more pronounced in HCM compared to CA—in spite of a higher absolute MyoTT value in CA patients. Hence, MyoTT may improve our understanding of the interplay between extracellular/intracellular and intravasal changes that occur in the myocardium during the disease course of different cardiomyopathies.
    Type of Medium: Online Resource
    ISSN: 1861-0684 , 1861-0692
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2218331-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: JACC: Cardiovascular Imaging, Elsevier BV, ( 2023-9)
    Type of Medium: Online Resource
    ISSN: 1936-878X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 2412441-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Frontiers in Cardiovascular Medicine, Frontiers Media SA, Vol. 9 ( 2022-5-3)
    Abstract: mRNA-based COVID-19 vaccination is associated with rare but sometimes serious cases of acute peri-/myocarditis. It is still not well known whether a 3rd booster-vaccination is also associated with functional and/or structural changes regarding cardiac status. The aim of this study was to assess the possible occurrence of peri-/myocarditis in healthy volunteers and to analyze subclinical changes in functional and/or structural cardiac parameters following a mRNA-based booster-vaccination. Methods and Results Healthy volunteers aged 18–50 years ( n = 41; m = 23, f = 18) were enrolled for a CMR-based serial screening before and after 3rd booster-vaccination at a single center in Germany. Each study visit comprised a multi-parametric CMR scan, blood analyses with cardiac markers, markers of inflammation and SARS-CoV-2-IgG antibody titers, resting ECGs and a questionnaire regarding clinical symptoms. CMR examinations were performed before (median 3 days) and after (median 6 days) 3rd booster-vaccination. There was no significant change in cardiac parameters, CRP or D-dimer after vaccination, but a significant rise in the SARS-CoV-2-IgG titer ( p & lt; 0.001), with a significantly higher increase in females compared to males ( p = 0.044). No changes regarding CMR parameters including global native T1- and T2-mapping values of the myocardium were observed. A single case of a vaccination-associated mild pericardial inflammation was detected by T2-weighted CMR images. Conclusion There were no functional or structural changes in the myocardium after booster-vaccination in our cohort of 41 healthy subjects. However, subclinical pericarditis was observed in one case and could only be depicted by multiparametric CMR.
    Type of Medium: Online Resource
    ISSN: 2297-055X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2781496-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Research in Cardiology, Springer Science and Business Media LLC, Vol. 112, No. 3 ( 2023-03), p. 353-362
    Abstract: The purpose of this study was to carefully analyse the therapeutic benefit of tafamidis in patients with wild-type transthyretin amyloidosis (ATTRwt) and cardiomyopathy (ATTRwt-CM) after one year of therapy based on serial multi-parametric cardiovascular magnetic resonance (CMR) imaging. Background Non-sponsored data based on multi-parametric CMR regarding the effect of tafamidis on the cardiac phenotype of patients with ATTRwt-CM are not available so far. Methods The present study comprised N  = 40 patients with ATTRwt-CM who underwent two serial multi-parametric CMR studies within a follow-up period of 12 ± 3 months. Baseline (BL) clinical parameters, serum biomarkers and CMR findings were compared to follow-up (FU) values in patients treated “with” tafamidis 61 mg daily ( n  = 20, group A) and those “without” tafamidis therapy ( n  = 20, group B). CMR studies were performed on a 1.5-T system and comprised cine-imaging, pre- and post-contrast T1-mapping and additional calculation of extracellular volume fraction (ECV) values. Results While left ventricular ejection fraction (LV-EF), left ventricular mass index (LVMi), left ventricular wall thickness (LVWT), native T1- and ECV values remained unchanged in the tafamidis group A, a slight reduction in LV-EF ( p  = 0.003) as well as a subtle increase in LVMi ( p  = 0.034), in LVWT ( p  = 0.001), in native T1- ( p  = 0.038) and ECV-values ( p  = 0.017) were observed in the untreated group B. Serum NT-proBNP levels showed an overall increase in both groups, however, with the untreated group B showing a relatively higher increase compared to the treated group A. Assessment of NYHA class did not result in significant intra-group differences when BL were compared with FU, but a trend to improvement in the treated group A compared to a worsening trend in the untreated group B (∆ p  = 0.005). Conclusion As expected, tafamidis does not improve cardiac phenotype in patients with ATTRwt-CM after one year of therapy. However, tafamidis seems to slow down cardiac disease progression in patients with ATTRwt-CM compared to those without tafamidis therapy based on multi-parametric CMR data already after one year of therapy.
    Type of Medium: Online Resource
    ISSN: 1861-0684 , 1861-0692
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2218331-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2020
    In:  Clinical Research in Cardiology Vol. 109, No. 4 ( 2020-4), p. 488-497
    In: Clinical Research in Cardiology, Springer Science and Business Media LLC, Vol. 109, No. 4 ( 2020-4), p. 488-497
    Type of Medium: Online Resource
    ISSN: 1861-0684 , 1861-0692
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2218331-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-12-16)
    Abstract: Cardiovascular magnetic resonance (CMR) plays an important clinical role for diagnosis and therapy monitoring of cardiac amyloidosis (CA). Previous data suggested a lower native T1 value in spite of a higher LV mass and higher extracellular volume fraction (ECV) value in wild-type transthyretin amyloidosis (ATTRwt) compared to light-chain amyloidosis (AL)—resulting in the still unsolved “native T1 vs. ECV paradox” in CA. The purpose of this study was to address this paradox. The present study comprised N = 90 patients with ATTRwt and N = 30 patients with AL who underwent multi-parametric CMR studies prior to any specific treatment. The CMR protocol comprised cine- and late-gadolinium-enhancement (LGE)-imaging as well as T2-mapping and pre-/post-contrast T1-mapping allowing to measure myocardial ECV. Left ventricular ejection fraction (LV-EF), left ventricular mass index (LVMi) and left ventricular wall thickness (LVWT) were significantly higher in ATTRwt in comparison to AL. Indexed ECV (ECVi) was also higher in ATTRwt ( p  = 0.041 for global and p  = 0.001 for basal septal). In contrast, native T1- [1094 ms (1069–1127 ms) in ATTRwt vs. 1,122 ms (1076–1160 ms) in AL group, p  = 0.040] and T2-values [57 ms (55–60 ms) vs. 60 ms (57–64 ms); p  = 0.001] were higher in AL. Considering particularities in myocardial density, “total extracellular mass” (TECM) was substantially higher in ATTRwt whereas “total intracellular mass” (TICM) was rather similar between ATTRwt and AL. Consequently, the “ratio TICM/TECM” was lower in ATTRwt compared to AL (0.58 vs. 0.83; p  = 0.007). Our data confirm the presence of a “native T1 vs. ECV paradox” with lower native T1 values in spite of higher myocardial mass and ECV in ATTRwt compared to AL. Importantly, this observation can be explained by particularities regarding myocardial density that result in a lower TICM/TECM “ratio” in case of ATTRwt compared to AL—since native T1 is determined by this ratio.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-12-27)
    Abstract: Interventional magnetic resonance imaging (MRI) procedures promise to open-up new vistas regarding clinically relevant diagnostic and/or therapeutic procedures in the field of cardiology. However, a number of major limitations and challenges regarding interventional cardiovascular magnetic resonance (CMR) procedures still delay their translation from pre-clinical studies to human application. A CMR-conditional cardiac phantom was constructed using MR-safe or -conditional materials only that is based on a unique modular composition allowing quick replacement of individual components. A maximal flow of 76 ml/sec in the aorta and 111 ml/sec in the pulmonary artery were measured, whereas the maximal flow velocity was 56 cm/sec and 89 cm/sec, respectively. A conventional wedge-pressure catheter was advanced over a MRI-conditional guidewire into the right ventricle and thereafter positioned in the pulmonary artery. Pulmonary artery pressure was measured, obtaining the following values for our cardiac phantom: max/min/mean = 16/10/12 mmHg. The presented CMR-conditional cardiac phantom is the first of its kind that does not only mimic cardiac mechanics with adjustable fluid pressure in a four chamber setup that is closely adapted to that of the human heart, but also enables introduction and testing of interventional tools such as guidewires and catheters.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...