GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Association of Immunologists  (1)
  • Korporal, Mirjam  (1)
Material
Publisher
  • The American Association of Immunologists  (1)
Language
Years
Subjects(RVK)
  • 1
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 179, No. 2 ( 2007-07-15), p. 1322-1330
    Abstract: The suppressive function of regulatory T cells (Treg) is impaired in multiple sclerosis (MS) patients. The mechanism underlying the Treg functional defect is unknown. Treg mature in the thymus and the majority of cells circulating in the periphery rapidly adopt a memory phenotype. Because our own previous findings suggest that the thymic output of T cells is impaired in MS, we hypothesized that an altered Treg generation may contribute to the suppressive deficiency. We therefore determined the role of Treg that enter the circulation as recent thymic emigrants (RTE) and, unlike their CD45RO+ memory counterparts, express CD31 as typical surface marker. We show that the numbers of CD31+-coexpressing CD4+CD25+CD45RA+CD45RO−FOXP3+ Treg (RTE-Treg) within peripheral blood decline with age and are significantly reduced in MS patients. The reduced de novo generation of RTE-Treg is compensated by higher proportions of memory Treg, resulting in a stable cell count of the total Treg population. Depletion of CD31+ cells from Treg diminishes the suppressive capacity of donor but not patient Treg and neutralizes the difference in inhibitory potencies between the two groups. Overall, there was a clear correlation between Treg-mediated suppression and the prevalence of RTE-Treg, indicating that CD31-expressing naive Treg contribute to the functional properties of the entire Treg population. Furthermore, patient-derived Treg, but not healthy Treg, exhibit a contracted TCR Vβ repertoire. These observations suggest that a shift in the homeostatic composition of Treg subsets related to a reduced thymic-dependent de novo generation of RTE-Treg with a compensatory expansion of memory Treg may contribute to the Treg defect associated with MS.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2007
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...