GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Konopka, Tomasz  (2)
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2020
    In:  Cancer Research Vol. 80, No. 16_Supplement ( 2020-08-15), p. 1320-1320
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 16_Supplement ( 2020-08-15), p. 1320-1320
    Abstract: Somatic mutation calling from bulk DNA sequencing is a complex problem susceptible to elevated false positive rates. High mapping quality is considered an important feature of reliable variant calls. At the resolution of short reads, ~10% of the genome displays high sequence similarity with at least one other genomic region and is assigned low mapping quality by alignment algorithms. These low-mapping-quality regions represent recurrent blind spots for mutation callers, which discard many of the variants they harbor, overlooking true biological variation. Here, we developed a pipeline to call substitutions in the low-mapping-quality genome. We used a published thesaurus approach to annotate the variant positions with their high-similarity links. We trained a classifier to emulate high-quality consensus calls made in unique regions using 20 features unrelated to mapping quality, reaching ~95% accuracy in those regions. In an independent sample more than 90% of the thesaurus calls were validated through linked-read sequencing. We then applied the classifier to all candidate substitutions of 2,658 cancer whole genomes from the PCAWG/ICGC consortium including variants falling in low-mapability regions. We retrieve hidden thesaurus variants genome-wide in ~6% of the genome, including genic, coding, and promoter regions. Thesaurus calls are directly proportional in numbers to somatic calls falling in the low-mapping-quality genome and share a similar trinucleotide context spectrum. Rescuing these mutations reveal hidden signal in known cancer genes, including PIK3CA, and excess of mutations genome-wide in promoter, untranslated, and coding regions of many other genes. We also find potential excess of non-synonymous mutations, including in genes from the TRIM and POTE families, having been previously implicated in multiple cancer types. Altogether, we developed a pipeline to call somatic substitutions in the low-mapping-quality genome and uncovered hidden somatic changes along the genomes of human cancers. In the future, this pipeline could be extended to indels and structural variants, and applied to the study of de novo germline variants. Citation Format: Maxime Tarabichi, Jonas Demeulemeester, Annelien Verfaillie, Peter Van Loo, Tomasz Konopka. The landscape of somatic substitutions in the repetitive genome across cancer types [abstract]. In: Proceedings of the Annual Meeting of the American Association for Cancer Research 2020; 2020 Apr 27-28 and Jun 22-24. Philadelphia (PA): AACR; Cancer Res 2020;80(16 Suppl):Abstract nr 1320.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2021
    In:  Nature Biotechnology Vol. 39, No. 12 ( 2021-12), p. 1589-1596
    In: Nature Biotechnology, Springer Science and Business Media LLC, Vol. 39, No. 12 ( 2021-12), p. 1589-1596
    Type of Medium: Online Resource
    ISSN: 1087-0156 , 1546-1696
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 1494943-X
    detail.hit.zdb_id: 1311932-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...