GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Oncotarget, Impact Journals, LLC, Vol. 7, No. 35 ( 2016-08-30), p. 56241-56252
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 887-887
    Abstract: PAX5 is a transcription factor required for B-cell development and maintenance. We previously showed that PAX5-PML, a fusion gene found in acute lymphoblastic leukemia (ALL), dominant negatively inhibited PAX5 transcriptional activity. Reported data including ours revealed that PAX5 fusion proteins had possible oncogenic ability; however, leukemogenicity of PAX5 fusion genes and other PAX5 mutations in mice model has not been clarified, yet. Here we demonstrated leukemia development in mice by introducing PAX5-PML. Pro B cells derived from mouse fetal liver were transfected with PAX5-PML expression vector and transplanted into mice. All 8 transplanted mice died with pro B ALL from day 63 to 158. Leukemic cells could be serially transplanted and mice died more rapidly with repetition (Figure A). Among the target genes transcriptionally activated by PAX5, expressions of BLNK, Fcer2a, and CD72 were significantly repressed in leukemia cells but repression of CD19 and CD79a were mild, suggesting the importance of down regulation of these genes for differentiation block. We compared mRNA expression profile between leukemia cells and normal pro B cells and gene set enrichement analysis (GSEA) identified candidates for second hits for development of leukemia. We analyzed the mechanism of the selective repression of CD19, Fcer2a, and BLNK and the significance of the second hit candidates, using a cell line established from leukemia cells of the third transplanted mouse. The results will show the meeting. Figure 1 Figure 1. Disclosures Sugimoto: Otsuka Pharmaceutical Co., Ltd: Employment. Naoe:Zenyaku Kogyo: Research Funding; Dainippon Sumitomo Pharma: Research Funding; Kyowa Hakko Kirin Co. LTD: Research Funding; Chugai Pharmaceutical Co. LTD: Research Funding; Novartis Pharma,: Research Funding; Bristol-Myers Squibb: Research Funding; Otsuka Pharmaceutical Co. LTD: Research Funding; FUJIFILM Corporation: Research Funding. Kiyoi:Zenyaku Kogyo: Research Funding; Dainippon Sumitomo Pharma: Research Funding; Kyowa Hakko Kirin Co. LTD.: Research Funding; Chugai Pharmaceutical Co. LTD: Research Funding; Bristol-Myers Squibb: Research Funding; FUJIFILM Corporation: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 3013-3013
    Abstract: Primary effusion lymphoma (PEL) is a subtype of non-Hodgkin lymphoma caused by human herpes virus 8 (HHV-8), which mainly occurs in patients with acquired immunodeficiency. It is highly refractory to conventional chemotherapies, and has a very poor prognosis. We recently developed patient-derived xenograft (PDX) screening, a novel high-throughput drug screening system using PDX cells that were established by transplantations of primary tumor cells into immunodeficient mice and maintained primary cell phenotype. PDX screening is expected to discover anti-tumor drugs that have been overlooked by conventional screenings using cell lines. Here, we performed a PDX screening to develop a new therapeutic agent for PEL. We previously established a PDX and a cell line designated as GTO from the same primary cells of PEL. We performed screenings of a library containing 3518 known pharmacologically active substance and off-patent drugs using the PDX cells (PDX screening) and GTO (Cell-line screening). We compared the results of both screenings and found that PDX cells and cell lines had quite different drug sensitivity profiles. The correlation coefficient between them was 0.67. Twenty-six drugs (0.7%) were at least 2 times more effective for PDX cells than for GTO and designated as PDX-preferred drugs (Figure A). The opposites were named as cell line-preferred drugs and existed 80 (2.2%). We found that PDX-preferred drugs significantly higher activity to induce reactive oxygen species (ROS) production (P 〈 0.001), indicating the sensitivity of PDX cells to oxidative stress. We examined the reproducibility of anti-tumor effect of top 10 compounds of PDX screening in different system including in vivo mouse model and finally selected YM155, a possible survivin inhibitor, as the best candidate for an anti-tumor drug for PEL. It showed strong and dose-dependent anti-tumor effect on both PDX cells and cell lines of PEL. Its GI50 was 7.8 nM in the PDX cells, and 1.2 - 7.9 nM in three kinds of PEL cell lines. YM155 treatment increased the cleavage of caspase-3, caspase-7, and PARP and caused apoptosis of GTO, which was inhibited by a caspase inhibitor, Z-VAD-FMK. Although YM155 was discovered as a survivin inhibitor, we observed that YM155 reduced myeloid cell leukemia-1 (MCL-1) protein prior to survivin reduction by time course experiments. Observed MCL-1 reduction by YM155 was attenuated by a proteasome inhibitor, MG132, suggesting that MCL-1 reduction was due to proteasome-dependent degradation. Furthermore, we confirmed the importance of MCL-1 for survival by its knockdown by siRNA in PEL cell line. Finally, we assessed the in vivo effect of YM155. NOD/SCID/IL-2Rgnull mice were injected intraperitoneally with PEL-PDX cells and were treated with vehicle or YM155 (5mg/kg) from day 1 to 21. YM155 was administered by continuous subcutaneous injection using osmotic pumps. Treatment with YM155 significantly inhibited progression of ascites compared with control mice (Figure B). These results suggested that YM155 was a promising anti-cancer agent for PEL. Figure Figure. Disclosures Sugimoto: Otsuka Pharmaceutical Co., Ltd.: Employment. Kiyoi:Chugai Pharmaceutical Co. LTD.: Research Funding; Alexion Pharmaceuticals: Research Funding; MSD K.K.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; Astellas Pharma Inc.: Consultancy, Research Funding; Yakult Honsha Co.,Ltd.: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; Fujifilm Corporation: Patents & Royalties, Research Funding; Zenyaku Kogyo Co.LTD.: Research Funding; Phizer Japan Inc.: Research Funding; Novartis Pharma K.K.: Research Funding; Mochida Pharmaceutical Co., Ltd.: Research Funding; Toyama Chemikal Co.,Ltd.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; AlexionpharmaLLC.: Research Funding; JCR Pharmaceutlcals Co.,Ltd.: Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Celgene Corporation: Consultancy; Eisai Co., Ltd.: Research Funding; Kyowa-Hakko Kirin Co.LTD.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 4349-4349
    Abstract: Pax5 is an essential transcription factor to maintain B cell identity. Pax5 is expressed in stages from pro-B to mature B cells and promotes the B cell differentiation program by transcriptional activation of many B cell receptor (BCR)-related genes such as CD19, CD79a, and BLNK. On the contrary, it inhibits plasma cell differentiation by suppressing the expression of BLIMP1 and XBP-1, transcription factors essential for plasma cell differentiation. After BCR stimulation by antigen, upregulation of BLIMP1 and XBP-1 and subsequent suppression of PAX5 by BLIMP1 were observed and thought to be the trigger of plasma cell differentiation. We previously demonstrated that serine phosphorylation of PAX5 by ERK1/2, a main component of BCR signal, attenuated the BLIMP1 suppression by PAX5 and that the PAX5 phosphorylation might be the initial event for plasma cell differentiation (Yasuda T et al, J Immunol. 2012; 188: 6127-34). Here, we investigated additional PAX5 phosphorylation by BCR signal and found that another BCR signal component, Syk, caused PAX5 phosphorylation in vitro (Figure A). We identified the tyrosines that were phosphorylated by Syk in vitro by making phosphorylation-defective mutants, and confirmed that Syk phosphorylated PAX5 at the same sites in vivo (Figure B). In the luciferase reporter assays, PAX5 tyrosine phosphorylation by Syk attenuated the BLIMP1 suppression by PAX5, similarly to its serine phosphorylation by ERK1/2, and both phosphorylations co-operatively worked for it (Figure C). Furthermore, we demonstrated that B cell receptor stimulation with anti-IgM antibody induced Syk and ERK1/2 activation, tyrosine and serine phosphorylation of endogenous Pax5, and upregulation of Blimp1 mRNA. These results suggested that PAX5 phosphorylations by Syk and ERK1/2 co-operatively work for the cancelation of transcriptional repression of Blimp1 by PAX5 after BCR activation by antigen. This might be a trigger of plasma cell differentiation. Our findings give a new insight into the regulation of the terminal differentiation of B cells. Figure 1 Figure 1. Disclosures Naoe: Zenyaku Kogyo: Research Funding; Dainippon Sumitomo Pharma: Research Funding; Kyowa Hakko Kirin Co. LTD: Research Funding; Chugai Pharmaceutical Co. LTD: Research Funding; Novartis Pharma,: Research Funding; Bristol-Myers Squibb: Research Funding; Otsuka Pharmaceutical Co. LTD: Research Funding; FUJIFILM Corporation: Research Funding. Kiyoi:Zenyaku Kogyo: Research Funding; Dainippon Sumitomo Pharma: Research Funding; Kyowa Hakko Kirin Co. LTD.: Research Funding; Chugai Pharmaceutical Co. LTD: Research Funding; Bristol-Myers Squibb: Research Funding; FUJIFILM Corporation: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Pharmacological Research, Elsevier BV, Vol. 120 ( 2017-06), p. 242-251
    Type of Medium: Online Resource
    ISSN: 1043-6618
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 1471456-5
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1331-1331
    Abstract: Despite of great improvement of treatment outcome by ABL kinase inhibitors, Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is still intractable disease, and novel therapeutic agents are anticipated. We recently developed a high-throughput drug screening system using patient-derived xenograft (PDX) cells. PDX cells highly maintain phenotypes of primary malignant cells, such as heterogeneity of cancer cells, slower growth rate than cell lines, and microenvironment dependency. Drug screening by PDX cells can pick up anti-tumor reagents with new mechanisms that were overlooked by conventional cell-line based screenings. Here, we discovered verteporfin, an approved drug for macular degeneration, as a candidate for novel therapeutic agent of Ph+ ALL. We established PDX of 3 Ph+ ALL patients (PhLO, PhLK, and PhLH) by transplanting primary Ph+ ALL cells into NOD/SCID/IL-2Rgnull (NOG) mice. We developed a high-throughput drug screening system using one of these PDX cells (PDX screening) and screened the library of 3440 compounds containing approved drugs and pharmacologically active reagents. The profile of drugs selected by PDX screening was quite different from that by the screening using Ph+ ALL cell line (Cell line screening). Verteporfin was selected by PDX screening, whereas it did not demonstrate very high anti-leukemic effect in Cell line screening. We confirmed the anti-leukemic effect of verteporfin ex vivo using the 3 PDX cells and ALL-1, the cell line used in the Cell line screening. All 3 PDX cells were more sensitive to verteporfin than ALL-1 (EC50: PhLO cells, 228 nM; PhLK cells, 1.8 µM; PhLH cells; 395 nM; ALL-1, 3.93 µM). In addition, combined use of verteporfin and dasatinib, an ABL kinase inhibitor used for the treatment of Ph+ ALL, showed synergistic growth suppression of PhLO cells. Combination index (CI) values calculated by combination index algorism were less than 1.0 in most combinations of 16 data points (CI mean, 0.73; CI range, 0.28-1.34). Furthermore, the mechanism of action of verteporfin was intensively investigated. In combination with red light irradiation, verteporfin induces apoptosis of tumor cells through production of reactive oxygen species (ROS), which is known as photodynamic therapy. We revealed that verteporfin produced ROS light-independently in PhLO cells and induced their apoptosis. Verteporfin-induced apoptosis was inhibited by the addition of reduced glutathione to the culture medium, suggesting the large involvement of ROS production in the verteporfin-induced apoptosis. Finally, we assessed the in vivo effect of verteporfin. NOG mice transplanted with PhLO cells were treated with vehicle, verteporfin (140mg/kg/day), dasatinib (20mg/kg/day), or both of them from day 22 to day 28. Dasatinib was intraperitoneally injected and verteporfin was administered by continuous subcutaneous injection using osmotic pumps because of its very short half-life. We measured the ratios of leukemic PDX cells in bone marrow and spleen on day 28. Both single therapies by verteporfin and dasatinib significantly reduced the leukemia cell ratios in spleen and the combination therapy of them further reduced leukemia cells in spleen (Figure A). In bone marrow, both single therapies demonstrated weaker anti-leukemic effect than in spleen, but the combination therapy showed significantly enhanced effect, indicating the synergistic effect between them in vivo (Figure B). These results indicate the promisingness of verteporfin as a new anti-leukemic reagent and PDX screening as a new strategy for the development of anti-cancer drug. Figure 1. Figure 1. Disclosures Naoe: Pfizer Inc.: Research Funding; Toyama Chemical Co.,LTD.: Research Funding; Otsuka Pharmaceutical Co.,Ltd.: Patents & Royalties, Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Kyowa-Hakko Kirin Co.,Ltd.: Patents & Royalties, Research Funding; Fujifilm Corporation: Patents & Royalties, Research Funding; Chugai Pharmaceutical Co.,LTD: Patents & Royalties; Celgene K.K.: Research Funding; Astellas Pharma Inc.: Research Funding. Kiyoi:Yakult Honsha Co.,Ltd.: Research Funding; Novartis Pharma K.K.: Research Funding; MSD K.K.: Research Funding; Eisai Co., Ltd.: Research Funding; Alexion Pharmaceuticals: Research Funding; FUJIFILM Corporation: Patents & Royalties, Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Nippon Shinyaku Co., Ltd.: Research Funding; FUJIFILM RI Pharma Co.,Ltd.: Research Funding; Teijin Ltd.: Research Funding; Japan Blood Products Organization: Research Funding; Astellas Pharma Inc.: Consultancy, Research Funding; Taisho Toyama Pharmaceutical Co., Ltd.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; Pfizer Inc.: Research Funding; Mochida Pharmaceutical Co., Ltd.: Research Funding; Zenyaku Kogyo Co., Ltd.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; Kyowa Hakko Kirin Co., Ltd.: Consultancy, Research Funding; Bristol-Myers Squibb: Research Funding; Chugai Pharmaceutical Co., Ltd.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 3019-3019
    Abstract: Background: Despite remarkable advances of initial treatment in diffuse large B-cell lymphoma (DLBCL), the prognosis of the disease with MYC rearrangement remains poor with a median overall survival of less than 1 year. The application of intensive or targeting treatment failed to show a benefit for the disease, an innovative approach should be thus required to overcome the obstacle of MYC rearrangement. Recent findings revealed that the close interaction of tumor cells with stromal cells in its microenvironment is involved in resistance to chemotherapy, and that tumor microenvironment has been shed light on a potential attractive therapeutic target. Purpose: To overcome poor prognoses of intractable DLBCL with MYC rearrangement, we explored an effective drug targeting tumor microenvironment through the high-throughput drug screening (Sugimoto et al. Sci Rep. 2015). Material and methods: Allpatient samples were experimentally used with written informed consent. To perform drug screening against primary patient lymphoma cells with intractable clinical course,we firstly developed co-culture system of lymphoma cells and stromal cells, which allowed us to culture them in vitro.For this, isolated stromal cells derived from human lymph node were prepared. Then 3,440 compounds mainly containing known pharmacologically active substance or off-patent drugs were screened to identify effective drugs for patient lymphoma cells. The efficacy and mechanism of action of the drug were confirmed by subsequent in vitro and in vivo analyses. Results: Two patient tumor cells with MYC/BCL2 rearrangement were used for the drug screening. Both patients developed refractory diseases within 1 year after diagnosis. In the screening analyses, primary lymphoma cells obtained from lymph node for patient (Pt) #1 were used, and tumor cells from PDX mouse model for Pt #2 were used to validate the result of Pt #1. The both tumor cells could not survive in in vitro monoculture, while the both lymphoma cells could remarkably survive longer in co-culture with stromal cells. Then we performed drug screening against primary tumor cells from Pt #1. Ninety-nine compounds with the viability of tumor cells less than 0.5 were identified, and we validated cell death of these 99 compounds against the other lymphoma cells from Pt #2. Among 10 compounds identified as potentially effective for the both tumor cells, we picked out emetine, which induced cell death against the both cells with an IC50 of 312 nM and 506 nM, respectively. Regarding the effect of emetine on stromal cells, the proliferation and survival was not affected in the concentration of 2 µM emetine whose concentration was used for the screening. However, stromal cells pretreated 0.5 µM emetine decreased a support potential to tumor cells resulting from decreased ATP production and glutathione in tumor cells. In terms of the effect of emetine on tumor cells, the drug induced a G2/M arrest in tumor cells, which resulted in induction of apoptosis. Based on previous finding that emetine suppresses HIF-1a expression, which is one of key regulators glucose metabolisms, we investigated the expression in tumor cells under the treatment of emetine. HIF-1a expression was suppressed in tumor cells as expected; we subsequently analyzed the status of glucose metabolism in tumor cells. The expression of key enzymes including HK2, PDK1, and LDHA were suppressed and ATP production and GLUT1 expression were also suppressed. The serial cascade of the alteration of glucose metabolism including the decreased mitochondrial membrane potential, the alteration of pentose phosphate pathway, and the reduction of NADPH and glutathione leading to the accrual of reactive oxygen species (ROS) was observed under the presence of emetine. In in vivo analyses, significant growth inhibition was observed under the emetine treatment (Figure A and B). Conclusions: Emetine identified by the drug screening is clearly effective for patient lymphoma cells with intractable clinical course in vitro and in vivo. Subsequent analyses regarding the mechanism of action of emetine revealed that the drug affected the both tumor cells and stromal cells in tumor microenvironment through the inhibition of glucose metabolism. Further investigations of the translation to clinic should be warranted. Disclosures Sugimoto: Otsuka Pharmaceutical Co., Ltd.: Employment. Kiyoi:Nippon Shinyaku Co., Ltd.: Research Funding; Fujifilm Corporation: Patents & Royalties, Research Funding; Eisai Co., Ltd.: Research Funding; Astellas Pharma Inc.: Consultancy, Research Funding; Phizer Japan Inc.: Research Funding; Yakult Honsha Co.,Ltd.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; MSD K.K.: Research Funding; Alexion Pharmaceuticals: Research Funding; Novartis Pharma K.K.: Research Funding; Mochida Pharmaceutical Co., Ltd.: Research Funding; Toyama Chemikal Co.,Ltd.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; AlexionpharmaLLC.: Research Funding; JCR Pharmaceutlcals Co.,Ltd.: Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Celgene Corporation: Consultancy; Zenyaku Kogyo Co.LTD.: Research Funding; Kyowa-Hakko Kirin Co.LTD.: Research Funding; Chugai Pharmaceutical Co. LTD.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Oncotarget, Impact Journals, LLC, Vol. 8, No. 8 ( 2017-02-21), p. 13085-13098
    Type of Medium: Online Resource
    ISSN: 1949-2553
    URL: Issue
    Language: English
    Publisher: Impact Journals, LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2560162-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Biochemical and Biophysical Research Communications, Elsevier BV, Vol. 475, No. 2 ( 2016-06), p. 176-181
    Type of Medium: Online Resource
    ISSN: 0006-291X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2016
    detail.hit.zdb_id: 1461396-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: FEBS Letters, Wiley, Vol. 593, No. 16 ( 2019-08), p. 2151-2161
    Abstract: Zinc‐finger protein 384 ( ZNF 384) fusion (Z‐fusion) genes have recently been identified as recurrent fusion genes in B‐cell precursor acute lymphoblastic leukaemia ( BCP ‐ ALL ) and have been detected in 7–17% of Philadelphia chromosome‐negative BCP ‐ ALL cases. We selected SALL 4 and ID 2 as potential Z‐fusion‐specific transcriptional targets that might lead to the differentiation disorder of Z‐fusion‐positive ALL . The introduction of EP 300‐ ZNF 384 and SYNRG ‐ ZNF 384 induced the expression of these genes. Z‐fusion proteins exhibited stronger transcriptional activities on the promoter or enhancer region of these genes than Wild‐Z. Furthermore, GST pull‐down assay revealed that Z‐fusion proteins associated more strongly with EP 300 than Wild‐Z. Coexpression of EP 300 specifically enhanced the transcriptional activities of Z‐fusion proteins. We propose the increased EP 300 binding of Z‐fusion proteins as a mechanism for their increased transcriptional activities.
    Type of Medium: Online Resource
    ISSN: 0014-5793 , 1873-3468
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1460391-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...