GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 991-991
    Abstract: Background: Measurable residual disease (MRD), as determined by quantitation of Nucleophosmin 1-mutated (NPM1mut) transcript levels (TL), provides significant prognostic information independent of other risk factors in patients (pts) with acute myeloid leukemia (AML). This is also addressed by the 2017 European LeukemiaNet (ELN) risk stratification system, which recommends taking into account results from MRD monitoring when selecting the appropriate post-remission therapy. Furthermore, MRD monitoring provides a powerful tool to evaluate treatment effects within clinical trials investigating novel therapies. Aims: To determine the impact of the anti-CD33 immunotoxin Gemtuzumab-Ozogamicin (GO) on kinetics of NPM1mut TL in pts with newly diagnosed NPM1mut AML [18 to 82 years (yrs), median age 58 yrs] enrolled in our randomized Phase III AMLSG 09-09 study (NCT00893399). In this study GO was randomized (1:1) to standard chemotherapy plus ATRA. Patients and Methods: In total, 588 evaluable pts were enrolled in the clinical AMLSG 09-09 study. Standard treatment comprised two cycles of induction therapy with A-ICE (ATRA, idarubicin, cytarabine, etoposide; arm A) followed by three consolidation cycles of high-dose cytarabine (n=371, 63%) or allogeneic hematopoietic cell transplantation (n=42, 8%). In the investigational arm (arm B), GO (3 mg/m²) was given at d1 of each induction and in the first consolidation cycle. 296 pts were randomized to arm A and 292 pts to arm B. For this correlative study, outcome analysis was restricted to the clinical endpoint cumulative incidence of relapse (CIR) due to study protocol requirements allowing overall survival analysis to be performed only two years after the last pt had been enrolled. MRD monitoring was performed in a total 503 pts for whom at least one bone marrow (BM) sample was available using RQ-PCR technique; the median follow-up (FU) of the 503 pts was 2.8 yrs. NPM1mut TL (ratio of NPM1mut/ABL1 transcripts x 104) were determined by RQ-PCR (sensitivity 10-5 to 10-6). Results: In total, 3711 BM samples were analyzed (at diagnosis, n=415; during treatment, n=1765; during FU, n=1531). Both study arms were well balanced with regard to pts characteristics and pretreatment NPM1mut TL. First, we evaluated the impact of GO on kinetics of NPM1mut TL during treatment. After the first induction cycle, median NPM1mut TL were significantly lower in the investigational arm (p=.001) and this was true for all subsequent treatment cycles [after induction II (p=.008), consolidation I (p 〈 .001), consolidation II (p=.006), consolidation III (p=.009)]. Next, we evaluated treatment effects on NPM1mut TL after two cycles of induction therapy in pts in complete remission (CR, n=378). At this time point, there was no difference in the proportion of pts achieving RQ-PCR negativity (RQ-PCRneg) [arm A 15% (28/192), vs arm B 17% (32/186); p=.57] between the two treatment arms. However, treatment according to investigational arm B with GO was associated with a significantly lower CIR rate (CIR at 4 yrs: arm B 29% vs arm A 45%, p=.02). In multivariate analysis randomization to arm B revealed as an independent prognostic factor for remission duration (HR 0.63, p=.018). At the end of treatment (EOT, n=288 pts in CR) the proportion of pts achieving RQ-PCRneg was significantly higher (55% vs 41%; p=.02) in the investigational arm; pts treated in arm B had a significantly lower CIR rate compared to arm A (CIR at 4 yrs: arm B 29% vs arm A 45%, p=.04). Conclusion: In our randomized Phase III AMLSG 09-09 study, the addition of GO to intensive chemotherapy plus ATRA was associated with a significantly better reduction of NPM1mut TL after each treatment cycle. This better clearance translated into a significantly lower CIR in the investigational arm with GO. Disclosures Paschka: Otsuka: Membership on an entity's Board of Directors or advisory committees; Bristol-Meyers Squibb: Other: Travel support, Speakers Bureau; Jazz: Speakers Bureau; Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Pfizer: Membership on an entity's Board of Directors or advisory committees; Sunesis: Membership on an entity's Board of Directors or advisory committees; Amgen: Other: Travel support; Janssen: Other: Travel support; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Astex: Membership on an entity's Board of Directors or advisory committees; Agios: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees, Travel support; Takeda: Other: Travel support. Krönke:Celgene: Honoraria. Fiedler:Amgen: Other: support for meetíng attendance; GSO: Other: support for meeting attendance; Teva: Other: support for meeting attendance; Gilead: Other: support for meeting attendance; JAZZ Pharmaceuticals: Other: support for meeting attendance; ARIAD/Incyte: Membership on an entity's Board of Directors or advisory committees, support for meeting attendance; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees; Amgen: Research Funding; Pfizer: Research Funding; Amgen: Patents & Royalties; Pfizer: Membership on an entity's Board of Directors or advisory committees, Research Funding; Daiichi Sankyo: Other: support for meeting attendance. Schroeder:Celgene: Consultancy, Honoraria, Research Funding. Lübbert:Janssen: Honoraria, Research Funding; TEVA: Other: Study drug; Cheplapharm: Other: Study drug; Celgene: Other: Travel Support. Götze:JAZZ Pharmaceuticals: Honoraria; Novartis: Honoraria; Takeda: Honoraria, Other: Travel aid ASH 2017; Celgene: Honoraria, Research Funding. Schleicher:Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Investigator; Bristol-Myers Squibb: Membership on an entity's Board of Directors or advisory committees; Ipsen: Membership on an entity's Board of Directors or advisory committees; Eissai: Other: Investigator; Astra Zeneca: Other: Investigator; Pfizer: Speakers Bureau; Janssen: Speakers Bureau; Celgene: Speakers Bureau. Schlenk:Pfizer: Research Funding, Speakers Bureau. Ganser:Novartis: Membership on an entity's Board of Directors or advisory committees. Döhner:Amgen: Consultancy, Honoraria; Astex Pharmaceuticals: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Pfizer: Research Funding; Agios: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Jazz: Consultancy, Honoraria; Celator: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Seattle Genetics: Consultancy, Honoraria; Astellas: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Bristol Myers Squibb: Research Funding; Bristol Myers Squibb: Research Funding; Astex Pharmaceuticals: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Astellas: Consultancy, Honoraria; Pfizer: Research Funding; Seattle Genetics: Consultancy, Honoraria; Jazz: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Celator: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria, Research Funding; Agios: Consultancy, Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Sunesis: Consultancy, Honoraria, Research Funding; Amgen: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 449-449
    Abstract: Background: Internal tandem duplications (ITD) in the receptor tyrosine kinase FLT3 occur in roughly 25% of younger adult patients (pts) with acute myeloid leukemia (AML). The multi-targeted kinase inhibitor midostaurin combined with intensive chemotherapy has shown activity against AML with FLT3 mutations. However, toxicity and potential drug-drug interactions with strong CYP3A4 inhibitors such as posaconazole may necessitate dose reduction. Aims: To evaluate the impact of age and midostaurin dose-adaptation after intensive induction chemotherapy on response and outcome in AML with FLT3-ITD within the AMLSG 16-10 trial (NCT01477606). Methods: The study included adult pts (age 18-70 years (yrs)) with newly diagnosed FLT3-ITD positive AML enrolled in the ongoing single-arm phase-II AMLSG 16-10 trial. Pts with acute promyelocytic leukemia were not eligible. The presence of FLT3-ITD was analyzed within our diagnostic study AMLSG-BiO (NCT01252485) by Genescan-based DNA fragment-length analysis. Induction therapy consisted of daunorubicin (60 mg/m², d1-3) and cytarabine (200 mg/m², continuously, d1-7); midostaurin 50 mg bid was applied from day 8 until 48h before start of the next treatment cycle. A second cycle was allowed in case of partial remission (PR). For consolidation therapy, pts proceeded to allogeneic hematopoietic-cell transplantation (HCT) as first priority; if alloHCT was not feasible, pts received three cycles of age-adapted high-dose cytarabine (HDAC) in combination with midostaurin starting on day 6. In all pts one-year maintenance therapy with midostaurin was intended. The first patient entered the study in June 2012 and in April 2014, after recruitment of n=147 pts, the study was amended including a sample size increase to 284 pts and a dose reduction to 12.5% of the initial dose of midostaurin in case of co-medication with strong CYP3A4 inhibitors (e.g. posaconazole). This report focuses on age and the comparison between the first (n=147) and the second cohort (n=137) of the study in terms midostaurin dose-adaptation. Results: Patient characteristics were as follows: median age 54 yrs (range, 18-70; younger, 68% 〈 60 yrs; older, 32% ≥ 60 yrs); median white cell count 44.7G/l (range 1.1-1543 G/l); karyotype, n=161 normal, n=16 high-risk according to ELN recommendations; mutated NPM1 n=174 (59%). Data on response to first induction therapy were available in 277 pts; complete remission (CR) including CR with incomplete hematological recovery (CRi) 60%, PR 20%, refractory disease (RD) 15%, and death 5%. A second induction cycle was given in 54 pts. Overall response (CR/CRi) after induction therapy was 76% (76%, younger; 76%, older) and death 6% (4%, younger; 10% older). The dose of midostaurin during first induction therapy was reduced in 53% and 71% of patients in cohort-1 and cohort-2, respectively. Reasons for dose reduction were in 58% and 49% toxicity, and in 9% and 23% co-medication in cohort-1 and cohort-2, respectively. No difference in response to induction therapy was noted between cohorts (p=0.81). Median follow-up was 18 months. Overall 146 pts received an alloHCT, 128 in first CR (n=94 younger, n=34 older; n=92 from a matched unrelated and n=36 from a matched related donor). In pts receiving an alloHCT within the protocol in median two chemotherapy cycles were applied before transplant (range 1-4). The cumulative incidence of relapse (CIR) and death after transplant were 13% (SE 3.2%) and 16% (SE 3.5%) without differences (p=0.97, p=0.41, respectively) between younger and older patients. So far maintenance therapy was started in 86 pts, 61 pts after alloHCT and 25 pts after HDAC. Fifty-five adverse events 3°/4° were reported being attributed to midostaurin; cytopenias after alloHCT were the most frequent (29%). CIR in patients starting maintenance therapy was 20% one year after start of maintenance without difference between alloHCT and HiDAC (p=0.99). In addition, no difference in CIR was identified in patients after consolidation with alloHCT or HDAC according to dose reduction of midostaurin during first induction therapy (p=0.43, p=0.98, respectively). Median overall survival was 25 months (younger, 26 months; older 23 months; p=0.15). Conclusions: The addition of midostaurin to intensive induction therapy and as maintenance after alloHCT or HDAC is feasible and effective without an impact of age and dose adaptation on outcome. Disclosures Schlenk: Amgen: Research Funding; Pfizer: Honoraria, Research Funding. Fiedler:GSO: Other: Travel; Pfizer: Research Funding; Kolltan: Research Funding; Amgen: Consultancy, Other: Travel, Patents & Royalties, Research Funding; Gilead: Other: Travel; Ariad/Incyte: Consultancy; Novartis: Consultancy; Teva: Other: Travel. Lübbert:Celgene: Other: Travel Funding; Janssen-Cilag: Other: Travel Funding, Research Funding; Ratiopharm: Other: Study drug valproic acid. Greil:Janssen-Cilag: Honoraria; Genentech: Honoraria, Research Funding; Mundipharma: Honoraria, Research Funding; Merck: Honoraria; AstraZeneca: Honoraria; Boehringer-Ingelheim: Honoraria; GSK: Research Funding; Ratiopharm: Research Funding; Cephalon: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Novartis: Honoraria; Bristol-Myers-Squibb: Consultancy, Honoraria; Pfizer: Honoraria, Research Funding; Roche: Honoraria, Research Funding; Sanofi Aventis: Honoraria; Eisai: Honoraria; Amgen: Honoraria, Research Funding. Greiner:BMS: Research Funding. Paschka:ASTEX Pharmaceuticals: Consultancy; Novartis: Consultancy; Medupdate GmbH: Honoraria; Bristol-Myers Squibb: Honoraria; Pfizer Pharma GmbH: Honoraria; Celgene: Honoraria. Heuser:Bayer Pharma AG: Research Funding; Karyopharm Therapeutics Inc: Research Funding; Novartis: Consultancy, Research Funding; Celgene: Honoraria; Pfizer: Research Funding; BerGenBio: Research Funding; Tetralogic: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2585-2585
    Abstract: Background: Activating mutations in receptor tyrosine kinases like FLT3 (FLT3mut) lead to an aberrant signal transduction thereby causing an increased proliferation of hematopoietic cells. Internal tandem duplications (FLT3-ITD) or mutations in the tyrosine kinase domain (FLT3-TKD) occur in about 25% of younger adult patients (pts) with acute myeloid leukemia (AML), with FLT3 -ITD being associated with an unfavourable outcome. FLT3mut present an excellent target for small molecule tyrosine kinase inhibitors (TKI). The multi-targeted kinase inhibitor midostaurin (PKC412) is currently under investigation as a FLT3-inhibitor in combination with intensive chemotherapy. Monitoring of the efficacy of such a targeted therapy and correlation of the results with clinical outcome will be of major importance. The plasma inhibitor activity (PIA) assay allows the visualization of the level of dephosphorylation of the target under TKI therapy. Preliminary data suggest a correlation between the grade of dephosphorylation, as a marker for the activity of the TKI, and clinical outcome. Aims: To individually measure the level of FLT3 dephosphorylation by PIA analysis in a large cohort of FLT3-ITD AML pts treated within our AMLSG16-10 trial (NCT: NCT01477606) which combines midostaurin with intensive chemotherapy, and to correlate the results with clinical outcome. Methods: Plasma samples from pts (age 18-70 years) with newly diagnosed FLT3-ITD AML were obtained at different time points for PIA analysis. All pts were enrolled on the ongoing AMLSG 16-10 trial applying intensive therapy in combination with midostaurin (50mg twice a day). For consolidation therapy, pts proceeded to allogeneic hematopoietic stem cell transplantation (alloHSCT) as first priority; pts not eligible for alloHSCT were intended to receive 3 cycles of age-adapted high-dose cytarabine (HiDAC) in combination with midostaurin from day 6 onwards. In all pts one year of maintenance therapy with midostaurin was intended. PIA analyses were performed at defined time points (day 15 of induction, each consolidation cycle, at the end of each treatment cycle, every 3 months during maintenance therapy) as previously described (Levis MJ, et al. Blood 2006; 108:3477-83). Results: So far, PIA analyses were performed in 63 pts (median age, 51.6 years; range, 20-70 years) during (n=63) and after (n=73) first and second induction cycle, during (n=40) and after (n=53) consolidation therapy with HiDAC as well as during maintenance therapy (n=82). During and after induction therapy median levels of phosphorylated FLT3 (p-FLT3) were 46.6% (4.5-100%, 〈 20% in 7.9%) and 39.4% (0.3-100%, 〈 20% in 20.5%), respectively. Co-medication with azoles had no impact on p-FLT3 levels. In pts with a FLT3-ITD mutant to wildtype ratio above our recently defined cut-off value of 0.5, levels of p-FLT3 〈 20% were associated with a complete remission (CR)-rate of 100%, whereas in those pts with p-FLT3 levels ≥20%, 4 out of 22 pts (18%) had resistant disease. In contrast, response in pts with a mutant to wildtype ratio below 0.5 was independent of the p-FLT3 level. During and at the end of consolidation cycles as well as during maintenance therapy p-FLT3 levels in pts treated with midostaurin were 52% (14.8-100%, 〈 20% in 5%), 63% (7.6-100%, 〈 20% in 7.4%) and 60.2% (11.5-100%, 〈 20% in 3.7%), respectively. In pts concomitantly treated with azoles levels of p-FLT3 were lower without reaching significance. 39 of 63 pts received alloHSCT in first CR; those pts with p-FLT3 levels 〈 20% after induction therapy had an in trend better survival, whereas no impact of phosphorylation levels was evident in pts receiving chemotherapy alone. Conclusion: In our study of FLT3-ITD AML pts treated with midostaurin in combination with intensive chemotherapy we could show that the lowest levels of p-FLT3 were reached during and after induction therapy. In pts with a FLT3-ITD mutant to wildtype ratio 〉 0.5, levels of p-FLT3 〈 20% during and after induction therapy were associated with a high CR-rate. When receiving alloHSCT these pts had an in trend better survival compared to those with p-FLT3 levels 〉 20%. An update of the data will be presented at the meeting. Disclosures Salwender: Celgene: Honoraria; Janssen Cilag: Honoraria; Bristol Meyer Sqibb: Honoraria; Amgen: Honoraria; Novartis: Honoraria. Horst:Amgen: Honoraria, Research Funding; Pfizer: Research Funding; Ingleheim: Research Funding; Boehringer: Research Funding; MSD: Research Funding; Gilead: Honoraria, Research Funding. Schlenk:Novartis: Honoraria, Research Funding; Boehringer-Ingelheim: Honoraria; Janssen: Membership on an entity's Board of Directors or advisory committees; Daiichi Sankyo: Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Research Funding; Teva: Honoraria, Research Funding; Arog: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 994-994
    Abstract: Background: In 2010 an international expert working group (European LeukemiaNet, ELN) has published recommendations for the diagnosis and management of acute myeloid leukemia (AML) including a risk stratification by cyto- and molecular genetics, subdividing AML into four risk groups. Emerging data on molecular markers in AML has led to an update of stratification criteria by ELN in 2017 including the recommendation for screening of the high-risk (HR) molecular markers ASXL1, RUNX1, and TP53 that have been shown to confer poor prognosis. The identification of HR markers results in a shift of the prognostic stratification towards adverse risk. Aim: To investigate the mutational landscape and to assess the prevalence of HR markers in patients (pts) with newly diagnosed AML classified as intermediate-I or -II risk (inter-I/-II) based on the 2010 ELN criteria in a prospective real-world application. Methods: Using a next-generation targeted sequencing approach [HaloPlex HS (Agilent) on a Miseq (Illumina)], we performed a prospective analysis of all coding regions of 42 tar get genes including the HR marker ASXL1, RUNX1, and TP53 in 329 newly diagnosed intermediate risk AML pts all enrolled in the AMLSG Biology and Outcome (BiO)-Registry [NCT01252485] of the German-Austrian AML Study Group (AMLSG). Pt genetic features obtained at diagnosis were as follows: inter-I: normal karyotype, n=198 (60%); inter-II: trisomy 8, n=28 (9%), nullisomy Y, n=12 (4%), t(9;11)(p21.3;q23.3), n=7 (2%), others, n=83 (25%); FLT3-internal tandem duplication (FLT3-ITD+), n=75 (23%), mutations (mut) in tyrosine kinase domain of FLT3 (FLT3-TKDmut), n=12 (3.6%), NPM1mut, n=59 (18%); median age was 67 years (range: 21-89 yrs); 60% of pts were male. Results: Overall, 1253 mut in 315 pts (96%) were identified. Mut in at least one of the HR markers were identified in 50% (n=166) of the pts. Mut in ASXL1 occurred in 32% (105/329), followed by RUNX1 in 26% (87/329), and TP53 in 4% (13/329) of the pts, respectively. Pts with mut in one of the three HR markers showed lower WBC (median 7.63 vs 24.25 109/L, P=.003), lower hemoglobin value (median 8.8 vs 9.3 g/dl, P=.01), lower LDH serum level (median 330 vs 559 U/l, P 〈 .0001) and were associated with older age at diagnosis (median 69.4 vs 66.8 yrs, P=.01). Furthermore, HR markers correlated with male gender (67% HR+ vs 51% HR-, P=.003). Mut in HR markers showed an inverse correlation with FLT3-ITD+ (6% vs 39%, P 〈 .0001), NPM1mut (1% vs 34%, P 〈 .0001), the genotype NPM1mut/FLT3-ITD+ (1% vs 37%, P 〈 .0001), normal karyotype (54% vs 66%, P=.025) and KMT2A rearrangement (0% vs 5%, P=.0035). Further, pts with HR markers exhibited more mut per case (mean 4.6 vs 2.8, P=.0001) and more frequently had co-mut in splicing genes such as SRSF2 (37% vs 14%, P 〈 0.0001) and SF3B1 (3% vs 0%, P=.029) and chromatin-cohesin genes such as EZH2 (9% vs 1%, P=.0009) and STAG2 (21% vs 4%, P 〈 0.0001); here, co-mut with SRSF2 and SF3B1 were mutually exclusive. Pts with HR wildtype showed a significant association with NPM1 (34% vs 1%, P 〈 .0001), DNMT3A (36% vs 20%, P=.0002), WT1 (8% vs 0.6 %, P=.0015) and GATA2 mut (7% vs 1.8%, P=.03) with significant co-mutational patterns such as WT1 with NPM1 (P=.03). Interestingly, we found BRAF mut in 3% (9/329) of the pt cohort with 5/9 pts harboring the p.V600E hotspot mut. Further analyses of survival data in these genotypes are currently ongoing. Conclusion: In this prospective study we could obtain real world mut data showing a high prevalence of HR marker mut in intermediate-I or -II risk AML pts as defined by 2010 ELN risk classification, thus revealing a significant proportion of pts (50%) harboring HR mut that confer an inferior survival. This high prevalence clearly demonstrates the clinical importance of HR marker screening as recommended by 2017 ELN criteria to identify pts, whose prognosis may be improved by more intensive therapy. Further, we could show that pts with HR marker mut differ significantly from HR wildtype pts with regard to clinical and molecular characteristics indicating a distinct biological subgroup which could potentially benefit from novel treatment approaches beyond conventional chemotherapy. Finally, novel genotypes such as NPM1mut/WT1mut will be further investigated with regard to their prognostic impact. Disclosures Bullinger: Bristol-Myers Squibb: Speakers Bureau; Pfizer: Speakers Bureau; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Sanofi: Research Funding, Speakers Bureau; Amgen: Honoraria, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Bayer Oncology: Research Funding; Janssen: Speakers Bureau. Paschka:Sunesis: Membership on an entity's Board of Directors or advisory committees; Otsuka: Membership on an entity's Board of Directors or advisory committees; Pfizer: Membership on an entity's Board of Directors or advisory committees; Novartis: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees, Other: Travel support, Speakers Bureau; Astex: Membership on an entity's Board of Directors or advisory committees; Amgen: Other: Travel support; Jazz: Speakers Bureau; Bristol-Meyers Squibb: Other: Travel support, Speakers Bureau; Janssen: Other: Travel support; Agios: Membership on an entity's Board of Directors or advisory committees; Astellas: Membership on an entity's Board of Directors or advisory committees, Travel support; Takeda: Other: Travel support. Lubbert:Celgene: Other: Travel Grant; Janssen: Honoraria, Research Funding; Teva: Other: Study drug. Salih:Several patent applications: Patents & Royalties: e.g. EP3064507A1. Ganser:Novartis: Membership on an entity's Board of Directors or advisory committees. Döhner:Sunesis: Consultancy, Honoraria, Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Bristol Myers Squibb: Research Funding; Janssen: Consultancy, Honoraria; Jazz: Consultancy, Honoraria; Janssen: Consultancy, Honoraria; Celator: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; Astellas: Consultancy, Honoraria; Seattle Genetics: Consultancy, Honoraria; Astex Pharmaceuticals: Consultancy, Honoraria; Astex Pharmaceuticals: Consultancy, Honoraria; Pfizer: Research Funding; Celator: Consultancy, Honoraria; Sunesis: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Agios: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; AbbVie: Consultancy, Honoraria; Amgen: Consultancy, Honoraria; AROG Pharmaceuticals: Research Funding; AbbVie: Consultancy, Honoraria; Agios: Consultancy, Honoraria; Pfizer: Research Funding; Novartis: Consultancy, Honoraria, Research Funding; Jazz: Consultancy, Honoraria; Bristol Myers Squibb: Research Funding; Seattle Genetics: Consultancy, Honoraria; Astellas: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 227-227
    Abstract: Background: Nucleophosmin (NPM1mut) mutations represent one of the most common gene mutations in acute myeloid leukaemia (AML) and can be used for monitoring minimal residual disease (MRD). In a former study, we could define clinical relevant check-points and a cut-off value to identify patients (pts) at high risk of relapse. Aims: To confirm our previous results on the clinical relevance of NPM1mut transcript levels (TL) in an extended cohort of younger AML pts (18 to 60 years) harbouring NPM1mut type A, B, C, D, JT, 4, QM, NM or KM, and to assess the impact of concurrent FLT3 internal tandem duplications (ITD) and DNMT3A (DNMT3Amut) mutations on NPM1mut TL kinetics. Methods: All pts were enrolled in one of four AMLSG [AMLHD98A (n=46; NCT00146120); AMLSG 07-04 (n=199; NCT00151242); AMLSG 09-09 (n=179; NCT00893399); AMLSG 16-10 (n=75; NCT01477606)] treatment trials. Treatment comprised double induction therapy (DI) with ICE (idarubicin, cytarabine, etoposide) with or without ATRA or gemtuzumab ozogamicin, or 1 cycle of daunorubicin and cytarabine followed by 1 to 4 cycles of high-dose cytarabine (n=292), autologous (n=19) or allogeneic stem cell transplantation (n=141). NPM1mut TL (ratio of NPM1mut/ABL1 transcripts x 104) were determined by RQ-PCR using TaqMan technology; the sensitivity of the assays was 10-5 to 10-6. DNMT3A and FLT3 -ITD (FLT3 -ITDmut) mutation status was assessed by standard PCR-based methods. Results: A total of 2835 samples from 499 NPM1mut pts were analysed at diagnosis (n=439), after each treatment cycle (n=1394) and during follow-up (FU) (n=1002). Peripheral blood (PB) samples were only included in the advanced FU period (defined as at least 12 months after completion of therapy). NPM1mut TL at diagnosis varied between 7.03 x103 and 2.38 x 107 (median 5.37 x 105). Pretreatment NPM1mut TL were not associated with clinical characteristics (e.g., age, WBC, BM blasts, FLT3 -ITDmut, DNMT3Amut) with the exception of LDH level (p=0.006) and did not impact event-free survival (EFS), relapse-free (RFS) and overall survival (OS). NPM1mut TL as log 10 transformed continuous variable at different time points during therapy were significantly associated with shorter remission duration (RD) and shorter OS. After DI therapy, the cumulative incidence of relapse (CIR) at 4 years was 10% for RQ-PCR-negative pts (n=41) versus 45% for RQ-PCR-positive pts (n=226) (p 〈 0.0001); the lower CIR translated into a significant better OS (92% versus 60%, respectively; p=0.001). After completion of therapy, CIR at 4 years was 13% for RQ-PCR-negative pts (n=126) and thus significantly lower compared with 56% in RQ-PCR-positive pts (n=139; p 〈 0.00001). Again, the lower CIR translated into a significantly better OS (81% versus 55%, respectively; p 〈 0.00001). Multivariable analysis performed at both time points showed that NPM1mut TL were significantly associated with a shorter RD (HR, 1.86; 2.30, respectively) and shorter OS (HR, 1.58; 1.72, respectively). During FU, 1002 bone marrow (BM) and PB samples from 280 pts were analysed. The relapse rate at 2 years for pts exceeding the previously defined cut-off value of 〉 200 NPM1mut copies was 90% with a median time to relapse of 1.38 months. In contrast, only 6/104 pts with sustaining RQ-PCR negativity relapsed. Finally, we evaluated the impact of concurrent FLT3 -ITDmut and DNMT3Amut on kinetics of NPM1mut TL. Following the first induction cycle, the median NPM1mut TL was significantly lower in pts with the NPM1mut/FLT3 -ITDwildtype/DNMT3Awildtype genotype compared to pts with the genotype NPM1mut/FLT3 -ITDmut/DNMT3Amut. This effect could be observed throughout subsequent treatment cycles. Conclusions: The results of our analysis on an extended cohort of younger AML pts with NPM1mut highly confirmed the two clinically relevant MRD check-points, after DI and after completion of therapy; during the FU period, exceeding a cut-off value of 〉 200 TL was highly predictive for relapse. Finally, we found a significant impact of concurrent FLT3 -ITDmut/DNMT3Amut on the kinetics of NPM1mut TL. Disclosures Fielder: Amgen: Other: Congress Participation; Teva: Other: Congress Participation; Kolltan: Research Funding; Amgen: Research Funding; Pfizer: Research Funding; Astellas: Other: Congress Participation. Horst:Boehringer Ingleheim: Research Funding; MSD: Research Funding; Pfizer: Research Funding; Gilead: Honoraria, Research Funding; Amgen: Honoraria, Research Funding. Götze:Celgene Corp.: Honoraria; Novartis: Honoraria. Schlenk:Pfizer: Honoraria, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Teva: Honoraria, Research Funding; Boehringer-Ingelheim: Honoraria; Arog: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Daiichi Sankyo: Membership on an entity's Board of Directors or advisory committees.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 322-322
    Abstract: Background: Internal tandem duplications (ITD) in the receptor tyrosine kinase FLT3 occur in roughly 25% of younger adult patients (pts) with acute myeloid leukemia (AML), implicating FLT3 as a potential target for kinase inhibitor therapy. The multi-targeted kinase inhibitor midostaurin shows potent activity against FLT3 as a single agent but also in combination with intensive chemotherapy. Aims: To evaluate the feasibility and efficacy of midostaurin in combination with intensive induction therapy and as single agent maintenance therapy after allogeneic hematopoietic stem cell transplantation (alloHSCT) or high-dose cytarabine (HIDAC). Methods: The study includes adult pts (age 18-70 years (yrs)) with newly diagnosed FLT3-ITD positive AML enrolled in the ongoing single-arm phase-II AMLSG 16-10 trial (NCT: NCT01477606). Pts with acute promyelocytic leukemia are not eligible. The presence of FLT3-ITD is analyzed within our diagnostic study AMLSG-BiO (NCT01252485) by Genescan-based fragment-length analysis (allelic ratio & gt;0.05 required to be FLT3-ITD positive). Induction therapy consists of daunorubicin (60 mg/m², d1-3) and cytarabine (200 mg/m², continuously, d1-7); midostaurin 50 mg bid is applied from day 8 onwards until 48h before start of the next treatment cycle. A second cycle is optional. For consolidation therapy, pts proceed to alloHSCT as first priority; if alloHSCT is not feasible, pts receive three cycles of age-adapted HIDAC in combination with midostaurin from day 6 onwards. In all pts maintenance therapy for one year is intended. This report focuses on the first cohort of the study (n=149) recruited between June 2012 and April 2014 prior to the amendment increasing the sample size; the amendment to the study is active since October 2014. Results: At study entry patient characteristics were median age 54 years (range, 20-70, 34% ≥ 60 yrs); median white cell count (WBC) 48.4G/l (range 1.1-178G/l); karyotype, n=103 normal, n=3 t(6;9), n=2 t(9;11), n=20 intermediate-2 and n=7 high-risk according to ELN recommendations, n=14 missing; mutated NPM1 n=92 (62%). Data on response to first induction therapy were available in 147 pts; complete remission (CR) 58.5%, partial remission (PR) 20.4%, refractory disease (RD) 15% and death 6.1%. A second induction cycle was given in 34 pts. Overall response after induction therapy was CR 75% and death 7.5%. Adverse events 3°/4° reported during the first induction cycle were most frequently gastrointestinal (n=34) and infections (n=81). During induction therapy midostaurin was interrupted, dose-reduced or stopped in 55% of the pts. Overall 94 pts received an alloHSCT, 85 in first CR (n=65 age & lt;60 yrs, n=20 age ≥60 yrs) and 9 pts after salvage outside the protocol or after relapse (n=70 from a matched unrelated and n=24 from a matched related donor). In pts receiving an alloHSCT within the protocol in median 2 chemotherapy cycles were applied before transplant (range 1-4) and the cumulative incidence of relapse and death at 12 months were 9.2% (SE 3.3%) and 19.5% (SE 4.8%). Maintenance therapy was started in 52 pts, 40 pts after alloHSCT and 12 pts after HIDAC. Only 4 adverse events 3°/4° were attributed to midostaurin. First analyses revealed a low cumulative incidence of relapse irrespective of the FLT3-ITD mutant to wildtype ratio ( & lt;0.5 versus ≥0.5) in patients proceeding to alloHSCT with 12% and 5% as well as for those after HIDAC consolidation with 28% and 29%, respectively. Conclusions: The addition of midostaurin to intensive induction therapy and as maintenance after alloHSCT or HIDAC is feasible and compared to historical data may be most effective in those patients with a high FLT3-ITD mutant to wildtype ratio. Disclosures Schlenk: Novartis: Honoraria, Research Funding. Salwender:Celgene: Honoraria; Janssen Cilag: Honoraria; Bristol Meyer Sqibb: Honoraria; Amgen: Honoraria; Novartis: Honoraria. Götze:Celgene Corp.: Honoraria; Novartis: Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 136, No. 26 ( 2020-12-24), p. 3041-3050
    Abstract: Monitoring of measurable residual disease (MRD) provides prognostic information in patients with Nucleophosmin1-mutated (NPM1mut) acute myeloid leukemia (AML) and represents a powerful tool to evaluate treatment effects within clinical trials. We determined NPM1mut transcript levels (TLs) by quantitative reverse-transcription polymerase chain reaction and evaluated the prognostic impact of NPM1mut MRD and the effect of gemtuzumab ozogamicin (GO) on NPM1mut TLs and the cumulative incidence of relapse (CIR) in patients with NPM1mut AML enrolled in the randomized phase 3 AMLSG 09-09 trial. A total of 3733 bone marrow (BM) samples and 3793 peripheral blood (PB) samples from 469 patients were analyzed. NPM1mut TL log10 reduction ≥ 3 and achievement of MRD negativity in BM and PB were significantly associated with a lower CIR rate, after 2 treatment cycles and at end of treatment (EOT). In multivariate analyses, MRD positivity was consistently revealed to be a poor prognostic factor in BM and PB. With regard to treatment effect, the median NPM1mut TLs were significantly lower in the GO-Arm across all treatment cycles, resulting in a significantly greater proportion of patients achieving MRD negativity at EOT (56% vs 41%; P = .01). The better reduction in NPM1mut TLs after 2 treatment cycles in MRD positive patients by the addition of GO led to a significantly lower CIR rate (4-year CIR, 29.3% vs 45.7%, P = .009). In conclusion, the addition of GO to intensive chemotherapy in NPM1mut AML resulted in a significantly better reduction in NPM1mut TLs across all treatment cycles, leading to a significantly lower relapse rate.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2586-2586
    Abstract: Background: CBF-AML is defined by recurrent genetic abnormalities which encompass t(8;21)(q22;q22), inv(16)(p13.1q22) or less frequently t(16;16)(p13.1;q22). Most frequent secondary chromosome aberrations in t(8;21) AML are del(9q) or loss of a sex chromosome, and in inv(16)/t(16;16) AML trisomy 22 or trisomy 8. At the molecular level mutations involving KIT, FLT3, or NRAS were identified as recurrent lesions in CBF-AML. However, the underlying genetic alterations which might trigger relapse in CBF-AML are not well delineated. Thus, the aim of our study was to characterize the clonal architecture of relapsed CBF-AML. Methods: We performed mutational profiling (KIT, FLT3-ITD, FLT3-TKD, NRAS, ASXL1) in paired samples obtained at diagnosis and at relapse from 66 adults with CBF-AML [inv(16), n=43; t(8;21), n=23] who all were treated within the AMLSG studies. Results: In inv(16) AML, the following mutation pattern was identified at diagnosis: KIT 13/40 (33%; exon 8, n=6; exon 17, n=5; exon 8+17, n=1; exon 11, n=1; missing data, n=3), NRAS 18/43 (42%), FLT3-TKD 4/43 (9%); none of the pts harboured FLT3-ITD or ASXL1 mutations. At the time of relapse, there was a shift in the mutation pattern in 26 pts (60%): KIT mutations (exon 8, n=5; exon 17, n=2; exon 8+17, n=1) were lost in 8 pts and 1 pt acquired an exon 17 KIT mutation; similarly, 15 pts lost and 1 pt gained NRAS mutation, respectively. Of note, all FLT3-TKD mutations were lost at the time of relapse, and only one pt gained a FLT3-ITD mutation. Based on these findings we calculated the stability in inv(16) AML for KIT, NRAS and FLT3-TKD mutations as 38%, 17%, and 0%, respectively. AML with t(8;21) presented a different diagnostic mutation profile: KIT 9/23 (39%; exon 17, n=8; exon 11, n=1), FLT3 -ITD 3/23 (13%), NRAS 2/23 (9%), and ASXL1 1/23 (4%); there were no FLT3-TKD mutations. At the time of relapse, the mutation pattern changed in 9 pts (39%); KIT mutations were lost in 4 pts (exon 17, n=3; exon 11, n=1), but acquired in 2 pts with both of them located in exon 17; only 1 pt lost the NRAS mutation. FLT3-ITD was lost in 2 and gained in 3 pts. There was no change in the ASXL1 mutation status. Thus, the stability for KIT, NRAS, FLT3-ITD and ASXL1 mutations in t(8;21) AML was calculated as 56%, 50%, 33% and 100%, respectively. Of note, mutations affecting the KIT and NRAS gene were almost mutually exclusive; there were only 3 pts with concurrent KIT and NRAS mutations at diagnosis [inv(16), n=2; t(8;21), n=1] . Conclusion: CBF-AML cases display a high degree of molecular heterogeneity with shift of the mutation pattern at relapse in both CBF-AML subtypes. The frequent loss of KIT and NRAS mutations at relapse suggests that there might be other important secondary lesions driving relapse. Ongoing high-resolution genome-wide profiling will further unravel the clonal hierarchy and genomic landscape in CBF-AML. Disclosures Götze: Novartis: Honoraria; Celgene Corp.: Honoraria. Greil:Celgene: Consultancy; Ratiopharm: Research Funding; Sanofi Aventis: Honoraria; Pfizer: Honoraria, Research Funding; Boehringer-Ingelheim: Honoraria; Astra-Zeneca: Honoraria; GSK: Research Funding; Novartis: Honoraria; Genentech: Honoraria, Research Funding; Janssen-Cilag: Honoraria; Merck: Honoraria; Mundipharma: Honoraria, Research Funding; Eisai: Honoraria; Amgen: Honoraria, Research Funding; Cephalon: Consultancy, Honoraria, Research Funding; Bristol-Myers-Squibb: Consultancy, Honoraria; AOP Orphan: Research Funding; Roche, Celgene: Honoraria, Research Funding. Schlenk:Boehringer-Ingelheim: Honoraria; Teva: Honoraria, Research Funding; Janssen: Membership on an entity's Board of Directors or advisory committees; Novartis: Honoraria, Research Funding; Daiichi Sankyo: Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Research Funding; Arog: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: ESMO Open, Elsevier BV, Vol. 4, No. 6 ( 2019), p. e000583-
    Type of Medium: Online Resource
    ISSN: 2059-7029
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2844985-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...