GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Kim, Hyo-Jeong  (2)
  • Sung, Mi-Kyung  (2)
Material
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  npj Climate and Atmospheric Science Vol. 6, No. 1 ( 2023-07-29)
    In: npj Climate and Atmospheric Science, Springer Science and Business Media LLC, Vol. 6, No. 1 ( 2023-07-29)
    Abstract: It is known that winter Atlantic-Niño events can induce the El Niño–Southern oscillation (ENSO) in the following winter with a lag of 1-year during one period. On the other hand, summer Atlantic-Niño events can lead to the ENSO in the subsequent winter with a half-year lag during another period. In this study, we investigate the distinct interdecadal modulation of the effect of the Atlantic-Niños on ENSO by analyzing observational reanalysis datasets. During the mid-twentieth century, the winter Atlantic-Niño exhibited increased intensity and extended westward due to warmer conditions in the tropical western Atlantic. As a result, convection occurred from the Amazon to the Atlantic, triggering an atmospheric teleconnection that led to trade wind discharging and equatorial Kelvin waves, ultimately contributing to the development of ENSO. In contrast, during late twentieth century, summer Atlantic-Niño events were closely linked to the South America low-level jet in boreal spring. This connection led to the formation of widespread and intense convection over the Amazon to the Atlantic region. Then, the Walker circulation was effectively modulated, subsequently triggering ENSO events. Further analysis revealed that the interdecadal modulation of the Atlantic–South America–Pacific mean state plays a crucial role in shaping the impact of Atlantic-Niños on ENSO by modifying not only the characteristics of the Atlantic-Niños but also ocean–atmospheric feedback process. Therefore, improving our understanding of the interdecadal modulation of the climatological mean state over the Pacific to Atlantic regions enables better anticipation of the interaction between the Atlantic and Pacific Oceans.
    Type of Medium: Online Resource
    ISSN: 2397-3722
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2925628-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  npj Climate and Atmospheric Science Vol. 6, No. 1 ( 2023-03-25)
    In: npj Climate and Atmospheric Science, Springer Science and Business Media LLC, Vol. 6, No. 1 ( 2023-03-25)
    Abstract: Accurate representation of the Atlantic Meridional Overturning Circulation (AMOC) in global climate models is crucial for reliable future climate predictions and projections. In this study, we used 42 coupled atmosphere–ocean global climate models to analyze low-frequency variability of the AMOC driven by the North Atlantic Oscillation (NAO). Our results showed that the influence of the simulated NAO on the AMOC differs significantly between the models. We showed that the large intermodel diversity originates from the diverse oceanic mean state, especially over the subpolar North Atlantic (SPNA), where deep water formation of the AMOC occurs. For some models, the climatological sea ice extent covers a wide area of the SPNA and restrains efficient air–sea interactions, making the AMOC less sensitive to the NAO. In the models without the sea-ice-covered SPNA, the upper-ocean mean stratification critically affects the relationship between the NAO and AMOC by regulating the AMOC sensitivity to surface buoyancy forcing. Our results pinpoint the oceanic mean state as an aspect of climate model simulations that must be improved for an accurate understanding of the AMOC.
    Type of Medium: Online Resource
    ISSN: 2397-3722
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2925628-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...