GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Society for Microbiology ; 2008
    In:  Infection and Immunity Vol. 76, No. 11 ( 2008-11), p. 4934-4943
    In: Infection and Immunity, American Society for Microbiology, Vol. 76, No. 11 ( 2008-11), p. 4934-4943
    Abstract: Francisella tularensis is a highly virulent bacterial pathogen that invades and replicates within numerous host cell types, including macrophages and epithelial cells. In an effort to better understand this process, we screened a transposon insertion library of the F. tularensis live vaccine strain (LVS) for mutant strains that invaded but failed to replicate within alveolar epithelial cell lines. One such strain isolated from this screen contained an insertion in the gene FTL_1914, which is conserved among all sequenced Francisella species yet lacks significant homology to any gene with known function. A deletion strain lacking FTL_1914 was constructed. This strain did not replicate in either epithelial or macrophage-like cells, and intracellular replication was restored by the wild-type allele in trans . Based on the deletion mutant phenotype, FTL_1914 was termed ripA ( r equired for i ntracellular p roliferation, factor A ). Following uptake by J774.A1 cells, F. tularensis LVS ΔripA colocalized with LAMP-1 then escaped the phagosome at the same rate and frequency as wild-type LVS-infected cells. Electron micrographs of the F. tularensis LVS Δ ripA mutant demonstrated the reentry of the mutant bacteria into double membrane vacuoles characteristic of autophagosomes in a process that was not dependent on replication. The F. tularensis LVS ΔripA mutant was significantly impaired in its ability to persist in the lung and in its capacity to disseminate and colonize the liver and spleen in a mouse model of pulmonary tularemia. The RipA protein was expressed during growth in laboratory media and localized to the cytoplasmic membrane. Thus, RipA is a cytoplasmic membrane protein conserved among Francisella species that is required for intracellular replication within the host cell cytoplasm as well as disease progression, dissemination, and virulence.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 2012
    In:  Journal of Bacteriology Vol. 194, No. 6 ( 2012-03-15), p. 1474-1484
    In: Journal of Bacteriology, American Society for Microbiology, Vol. 194, No. 6 ( 2012-03-15), p. 1474-1484
    Abstract: Francisella tularensis is a Gram-negative coccobacillus and is the etiological agent of the disease tularemia. Expression of the cytoplasmic membrane protein RipA is required for Francisella replication within macrophages and other cell types; however, the function of this protein remains unknown. RipA is conserved among all sequenced Francisella species, and RipA-like proteins are present in a number of individual strains of a wide variety of species scattered throughout the prokaryotic kingdom. Cross-linking studies revealed that RipA forms homoligomers. Using a panel of RipA-green fluorescent protein and RipA-PhoA fusion constructs, we determined that RipA has a unique topology within the cytoplasmic membrane, with the N and C termini in the cytoplasm and periplasm, respectively. RipA has two significant cytoplasmic domains, one composed roughly of amino acids 1 to 50 and the second flanked by the second and third transmembrane domains and comprising amino acids 104 to 152. RipA functional domains were identified by measuring the effects of deletion mutations, amino acid substitution mutations, and spontaneously arising intragenic suppressor mutations on intracellular replication, induction of interleukin-1β (IL-1β) secretion by infected macrophages, and oligomer formation. Results from these experiments demonstrated that each of the cytoplasmic domains and specific amino acids within these domains are required for RipA function.
    Type of Medium: Online Resource
    ISSN: 0021-9193 , 1098-5530
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2012
    detail.hit.zdb_id: 1481988-0
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society for Microbiology ; 2008
    In:  Infection and Immunity Vol. 76, No. 7 ( 2008-07), p. 2833-2842
    In: Infection and Immunity, American Society for Microbiology, Vol. 76, No. 7 ( 2008-07), p. 2833-2842
    Abstract: Francisella tularensis , a gram-negative facultative intracellular bacterial pathogen, causes disseminating infections in humans and other mammalian hosts. Macrophages and other monocytes have long been considered the primary site of F. tularensis replication in infected animals. However, recently it was reported that F. tularensis also invades and replicates within alveolar epithelial cells following inhalation in a mouse model of tularemia. TC-1 cells, a mouse lung epithelial cell line, were used to study the process of F. tularensis invasion and intracellular trafficking within nonphagocytic cells. Live and paraformaldehyde-fixed F. tularensis live vaccine strain organisms associated with, and were internalized by, TC-1 cells at similar frequencies and with indistinguishable differences in kinetics. Inhibitors of microfilament and microtubule activity resulted in significantly decreased F. tularensis invasion, as did inhibitors of phosphatidylinositol 3-kinase and tyrosine kinase activity. Collectively, these results suggest that F. tularensis epithelial cell invasion is mediated by a preformed ligand on the bacterial surface and driven entirely by host cell processes. Once internalized, F. tularensis -containing endosomes associated with early endosome antigen 1 (EEA1) followed by lysosome-associated membrane protein 1 (LAMP-1), with peak coassociation frequencies occurring at 30 and 120 min postinoculation, respectively. By 2 h postinoculation, 70.0% (± 5.5%) of intracellular bacteria were accessible to antibody delivered to the cytoplasm, indicating vacuolar breakdown and escape into the cytoplasm.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: mBio, American Society for Microbiology, Vol. 9, No. 6 ( 2018-12-21)
    Abstract: Francisella tularensis is a Gram-negative, facultative, intracellular bacterial pathogen and one of the most virulent organisms known. A hallmark of F. tularensis pathogenesis is the bacterium’s ability to replicate to high densities within the cytoplasm of infected cells in over 250 known host species, including humans. This demonstrates that F. tularensis is adept at modulating its metabolism to fluctuating concentrations of host-derived nutrients. The precise metabolic pathways and nutrients utilized by F. tularensis during intracellular growth, however, are poorly understood. Here, we use systematic mutational analysis to identify the carbon catabolic pathways and host-derived nutrients required for F. tularensis intracellular replication. We demonstrate that the glycolytic enzyme phosphofructokinase (PfkA), and thus glycolysis, is dispensable for F. tularensis SchuS4 virulence, and we highlight the importance of the gluconeogenic enzyme fructose 1,6-bisphosphatase (GlpX). We found that the specific gluconeogenic enzymes that function upstream of GlpX varied based on infection model, indicating that F. tularensis alters its metabolic flux according to the nutrients available within its replicative niche. Despite this flexibility, we found that glutamate dehydrogenase (GdhA) and glycerol 3-phosphate (G3P) dehydrogenase (GlpA) are essential for F. tularensis intracellular replication in all infection models tested. Finally, we demonstrate that host cell lipolysis is required for F. tularensis intracellular proliferation, suggesting that host triglyceride stores represent a primary source of glycerol during intracellular replication. Altogether, the data presented here reveal common nutritional requirements for a bacterium that exhibits characteristic metabolic flexibility during infection. IMPORTANCE The widespread onset of antibiotic resistance prioritizes the need for novel antimicrobial strategies to prevent the spread of disease. With its low infectious dose, broad host range, and high rate of mortality, F. tularensis poses a severe risk to public health and is considered a potential agent for bioterrorism. F. tularensis reaches extreme densities within the host cell cytosol, often replicating 1,000-fold in a single cell within 24 hours. This remarkable rate of growth demonstrates that F. tularensis is adept at harvesting and utilizing host cell nutrients. However, like most intracellular pathogens, the types of nutrients utilized by F. tularensis and how they are acquired is not fully understood. Identifying the essential pathways for F. tularensis replication may reveal new therapeutic strategies for targeting this highly infectious pathogen and may provide insight for improved targeting of intracellular pathogens in general.
    Type of Medium: Online Resource
    ISSN: 2161-2129 , 2150-7511
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2018
    detail.hit.zdb_id: 2557172-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Infection and Immunity, American Society for Microbiology, Vol. 76, No. 12 ( 2008-12), p. 5843-5852
    Abstract: Francisella tularensis causes systemic disease in humans and other mammals, with high morbidity and mortality associated with inhalation-acquired infection. F. tularensis is a facultative intracellular pathogen, but the scope and significance of cell types infected during disease is unknown. Using flow cytometry, we identified and quantified infected-cell types and assessed the impact of infection on cell populations following inhalation of F. tularensis strains U112, LVS, and Schu S4. Initially, alveolar macrophages comprised over 70% of Schu S4- and LVS-infected cells, whereas approximately 51% and 27% of U112-infected cells were alveolar macrophages and neutrophils, respectively. After 3 days, roughly half of Schu S4- and LVS- and nearly 80% of U112-infected cells were neutrophils. All strains infected CD11b high macrophages, dendritic cells, monocytes, and alveolar type II cells throughout infection. Macrophage, monocyte, and dendritic-cell populations were reduced during U112 infection but not Schu S4 or LVS infection. These results demonstrate directly that F. tularensis is a promiscuous intracellular pathogen in the lung that invades and replicates within cell types ranging from migratory immune cells to structural tissue cells. However, the proportions of cell types infected and the cellular immune response evoked by the human pathogenic strain Schu S4 differ from those of the human avirulent U112.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2008
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society for Microbiology ; 2010
    In:  Infection and Immunity Vol. 78, No. 12 ( 2010-12), p. 5022-5032
    In: Infection and Immunity, American Society for Microbiology, Vol. 78, No. 12 ( 2010-12), p. 5022-5032
    Abstract: Francisella tularensis is a highly virulent Gram-negative bacterium and is the etiological agent of the disease tularemia. IclR, a presumed transcriptional regulator, is required for full virulence of the animal pathogen, F. tularensis subspecies novicida U112 (53). In this study, we investigated the contribution of IclR to the intracellular growth, virulence, and gene regulation of human pathogenic F. tularensis subspecies. Deletion of iclR from the live vaccine strain (LVS) and SchuS4 strain of F. tularensis subsp. holarctica and F. tularensis subsp. tularensis , respectively, did not affect their abilities to replicate within macrophages or epithelial cells. In contrast to F. tularensis subsp. novicida iclR mutants, LVS and SchuS4 Δ iclR strains were as virulent as their wild-type parental strains in intranasal inoculation mouse models of tularemia. Furthermore, wild-type LVS and LVSΔ iclR were equally cytotoxic and induced equivalent levels of interleukin-1β expression by infected bone marrow-derived macrophages. Microarray analysis revealed that the relative expression of a limited number of genes differed significantly between LVS wild-type and Δ iclR strains. Interestingly, many of the identified genes were disrupted in LVS and SchuS4 but not in their corresponding F. tularensis subsp. novicida U112 homologs. Thus, despite the impact of iclR deletion on gene expression, and in contrast to the effects of iclR deletion on F. tularensis subsp. novicida virulence, IclR does not contribute significantly to the virulence or pathogenesis of F. tularensis LVS or SchuS4.
    Type of Medium: Online Resource
    ISSN: 0019-9567 , 1098-5522
    RVK:
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2010
    detail.hit.zdb_id: 1483247-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 185, No. 9 ( 2010-11-01), p. 5476-5485
    Abstract: Francisella tularensis is a facultative intracellular pathogen and potential biothreat agent. Evasion of the immune response contributes to the extraordinary virulence of this organism although the mechanism is unclear. Whereas wild-type strains induced low levels of cytokines, an F. tularensis ripA deletion mutant (LVSΔripA) provoked significant release of IL-1β, IL-18, and TNF-α by resting macrophages. IL-1β and IL-18 secretion was dependent on inflammasome components pyrin-caspase recruitment domain/apoptotic speck-containing protein with a caspase recruitment domain and caspase-1, and the TLR/IL-1R signaling molecule MyD88 was required for inflammatory cytokine synthesis. Complementation of LVSΔripA with a plasmid encoding ripA restored immune evasion. Similar findings were observed in a human monocytic line. The presence of ripA nearly eliminated activation of MAPKs including ERK1/2, JNK, and p38, and pharmacologic inhibitors of these three MAPKs reduced cytokine induction by LVSΔripA. Animals infected with LVSΔripA mounted a stronger IL-1β and TNF-α response than that of mice infected with wild-type live vaccine strain. This analysis revealed novel immune evasive mechanisms of F. tularensis.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2010
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...