GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Kaufmann, Christian A.  (2)
  • Levcenko, Sergiu  (2)
Material
Publisher
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    In: Applied Physics Letters, AIP Publishing, Vol. 110, No. 12 ( 2017-03-20)
    Abstract: Recent reports have suggested that the long decay times in time resolved photoluminescence (TRPL), often measured in Cu(In, Ga)Se2 absorbers, may be a result of detrapping from sub-bandgap defects. In this work, we show via temperature dependent measurements, that long lifetimes & gt;50 ns can be observed that reflect the true minority carrier lifetime not related to deep trapping. Temperature dependent time resolved photoluminescence and steady state photoluminescence imaging measurements are used to analyze the effect of annealing in air and in a nitrogen atmosphere between 300 K and 350 K. We show that heating the Cu(In, Ga)Se2 absorber in air can irreversibly decrease the TRPL decay time, likely due to a deterioration of the absorber surface. Annealing in an oxygen-free environment yields a temperature dependence of the TRPL decay times in accordance with Schockley Read Hall recombination kinetics and weakly varying capture cross sections according to T0.6.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2017
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Advanced Energy Materials, Wiley, Vol. 7, No. 18 ( 2017-09)
    Abstract: Time‐resolved photoluminescence (TRPL) is a powerful characterization technique to study carrier dynamics and quantify absorber quality in semiconductors. The minority carrier lifetime, which is critically important for high‐performance solar cells, is often derived from TRPL analysis. However, here it is shown that various nonideal absorber properties can dominate the TRPL signal making reliable extraction of the minority carrier lifetime not possible. Through high‐resolution intensity‐, temperature‐, voltage‐dependent, and spectrally resolved TRPL measurements on absorbers and devices it is shown that photoluminescence (PL) decay times for kesterite materials are dominated by minority carrier detrapping. Therefore, PL decay times do not correspond to the minority carrier lifetime for these materials. The lifetimes measured here are on the order of hundreds of picoseconds in contrast to the nanosecond lifetimes suggested by the decay curves. These results are supported with additional measurements, device simulation, and comparison with recombination limited PL decays measured on Cu(In,Ga)Se 2 . The kesterite material system is used as a case study to demonstrate the general analysis of TRPL data in the limit of various measurement conditions and nonideal absorber properties. The data indicate that the current bottleneck for kesterite solar cells is the minority carrier lifetime.
    Type of Medium: Online Resource
    ISSN: 1614-6832 , 1614-6840
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2594556-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...