GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 96, No. 3 ( 2017-3), p. 345-353
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 1458429-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 404-404
    Abstract: Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome. Recently we reported a high frequency of cooperating RUNX1 and CSF3R mutations in CN patients that developed AML or MDS. Only a combination of these two mutations induced elevated proliferation and diminished myeloid differentiation of CD34+ cells in vitro. To confirm these clinical data in an in vitro model, we generated human induced pluripotent stem cells (hiPSCs) from PBMNCs of a CN patient harbouring p.C151Y mutation in ELANE after acquisition of AML. During GCSF treatment, this patient acquired G-CSFRmutation p.Q741*, which leads to a truncated G-CSF receptor and was detected six years prior to overt AML. Three years later, he acquired an additional RUNX1 (p.R139G) mutation, which is located in the RUNT-homology domain (RHD). Subsequently, he developed AML (FAB M1) with trisomy 21. Reprogramming of PBMNCs isolated from the time-point of AML (ca. 80 % of AML blasts) resulted in the generation of hiPSCs clones harbouring either only ELANE p.C151Y mutation (CN-iPSC clone, derived from non-leukemia PBMNCs) or additional CSF3R and RUNX1 mutations and trisomy 21 (CN/AML-iPSC clone, derived from AML blasts), which was subsequently validated by Sanger sequencing and by digital PCR. These iPSCs clones have been tested for their pluripotency and self-renewal capacity. Both iPSC clones expressed the pluripotent stem cell surface markers SSEA-4 and TRA-1-60 and displayed alkaline phosphatase activity. Further they highly expressed mRNA of the pluripotent stem cell markers SOX2, ABCG2, DNMT and NANOG and were able to differentiate into all three germ layers (meso-, endo- and ectoderm). Embryoid body (EB)-based hematopoietic / neutrophilic differentiation of CN-iPS clones using serum-free APEL stem cell differentiation medium showed comparable amounts of CD34+ and CD33+ cells, but ~ 2-fold reduction of CD16+ cells, compared to healthy donor (HD) iPSCs. CN/AML-iPSCs were not able to differentiate into mature granulocytes at all and revealed 10-fold reduced counts of CD34+ and CD33+hematopoietic cells. Morphological examinations of Giemsa-stained cytospin slides confirmed these results. Additionally, CN/AML-iPSCs showed a highly reduced number of CFU-G and CFU-GM colonies in CFU-Assay. To investigate the intracellular mechanisms of leukemogenic transformation in CN, we analyzed gene expression profiles of hematopoietic cells generated from CN-iPSCs vs CN/AML-iPSCs and HD-iPSCs for various time points of differentiation in our EB based-system. Our previous microarray-based analysis of bone marrow CD33+ cells of this CN/AML patient revealed that genes overexpressed in early hematopoietic stem/progenitor cells (HSPCs) as compared to more mature progenitors, such as DNTT, BAALC, CD34, HPGDS, NPR3 and PROM1 were strongly upregulated in CN/AML blasts harbouring both RUNX1 and CSF3R mutations, as compared to the cells prior to leukemia development. Intriguingly, elevated expression of these genes was described previously in RUNX1-mutated de novo AML blasts (Mendler et al., JCO 2012). This genetic signature suggests transformation of hematopoietic progenitors carrying mutated CSF3R into more primitive hematopoietic progenitors after aquisition of RUNX1mutation. We were able to confirm markedly increase of mRNA levels of these genes in hematopoietic cells derived from CN/AML-iPSCs, as compared to CN-iPSCs. In addition, we found that hematopoietic cells of both CN-iPSCs and CN/AML-iPSCs revealed increased expression of unfolded-protein response (UPR) genes DDIT3 (CHOP), ATF4 and ATF6, as compared to HD-iPSCs. Activation of UPR in hematopoietic cells of CN-ELANEpatients has been previously described by our and other groups. CN/AML-iPSC-derived hematopoietic progenitor cells expressed RUNX1 mRNA at least two-fold higher, as compared to HD- or CN-iPSC-derived cells. In summary, we established an in vitro cellular model of leukemogenic transformation in CN patients using CN/AML-patient derived hiPSCs that confirmed clinical data of Skokowa et al. (Blood 123:2550, 2014) on a cooperative leukemogenic effect of CSF3R and RUNX1 mutations. Comprehensive analysis of hematopoiesis using this iPSCs model will give us a deeper view into this highly complex signaling network operating during leukemogenic transformation of HSCs in pre-leukemic bone marrow failure syndromes. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Society of Hematology ; 2016
    In:  Blood Vol. 128, No. 22 ( 2016-12-02), p. 1334-1334
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1334-1334
    Abstract: Severe congenital neutropenia (CN) is a pre-malignant bone marrow failure syndrome with maturation arrest of granulopoiesis at the level of promyelocytes in the bone marrow. We hypothesized that increased genetic instability in hematopoietic stem and progenitor cells (HSPC) of CN patients caused by inherited mutations in ELANE (neutrophil elastase) or HAX1(mitochondrial HCLS1-associated protein X-1) may lead to high risk of malignant transformation. Treatment of CN patients with granulocyte-colony stimulating factor (G-CSF) overcomes maturation arrest by forcing unfit HSPC to proliferate and differentiate despite the presence of inherited mutations and thus increasing the risk of leukemogenic transformation. We first investigated differences in DNA damage susceptibility of CD34+ and CD33+ bone marrow cells from CN-ELANE (n = 3) and CN-HAX1 (n = 3) patients, as compared to healthy donors using short-term treatment (5 minutes) with bleomycin to induce DNA double-strand breaks. To detect DNA lesions we used the LORD-Q method, a high-sensitivity long-run real-time PCR-based technique for DNA damage quantification (Lehle S. et al., Nucleic Acids Research, 2014). We found no differences in DNA damage induction between both groups of CN patients and healthy donors. Therefore, we hypothesized that not DNA damage but DNA repair mechanisms may be affected in these patients. Indeed, Gene Set Enrichment Analysis (GSEA) of microarray data revealed a marked inhibition of gene expression in pathways associated with DNA double-strand break (DSB) repair, mismatch repair as well as cell cycle regulation in HSPC from CN patients as compared to cells from healthy individuals. Validation by qRT-PCR confirmed severe downregulation of genes related to DSB repair (BRCA1 and RAD51), mismatch repair (MSH2 and PCNA) as well ascell cycle regulation (CHEK2 and CDKN2C) in CD33+ of both CN groups as compared to healthy individuals. Interestingly, CN-ELANE and CN-HAX1 groups behaved similarly with some exceptions showing decreased expression of CDC25B, RAD50 and ATR expression in the CN-HAX1 group only and of MRE11A in the CN-ELANEgroup only. Taken together, disrupted DNA repair and impaired expression of cell cycle regulating genes resulting from inherited mutations in ELANE and HAX1 indicate that HSPC of CN patients are more susceptible to malignant transformation. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Experimental Hematology, Elsevier BV, Vol. 53 ( 2017-09), p. S46-
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2005403-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Experimental Hematology, Elsevier BV, Vol. 53 ( 2017-09), p. S77-
    Type of Medium: Online Resource
    ISSN: 0301-472X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 2005403-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 99, No. 10 ( 2020-10), p. 2329-2338
    Abstract: Patients with the pre-leukemia bone marrow failure syndrome called severe congenital neutropenia (CN) have an approximately 15% risk of developing acute myeloid leukemia (AML; called here CN/AML). Most CN/AML patients co-acquire CSF3R and RUNX1 mutations, which play cooperative roles in the development of AML. To establish an in vitro model of leukemogenesis, we utilized bone marrow lin − cells from transgenic C57BL/6-d715 Csf3r mice expressing a CN patient–mimicking truncated CSF3R mutation. We transduced these cells with vectors encoding RUNX1 wild type (WT) or RUNX1 mutant proteins carrying the R139G or R174L mutations. Cells transduced with these RUNX1 mutants showed diminished in vitro myeloid differentiation and elevated replating capacity, compared with those expressing WT RUNX1 . mRNA expression analysis showed that cells transduced with the RUNX1 mutants exhibited hyperactivation of inflammatory signaling and innate immunity pathways, including IL-6, TLR, NF-kappaB, IFN, and TREM1 signaling. These data suggest that the expression of mutated RUNX1 in a CSF3R -mutated background may activate the pro-inflammatory cell state and inhibit myeloid differentiation.
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 1458429-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1108-1108
    Abstract: Although proven to be an excellent method for gene editing, CRISPR/Cas9-mediated technology still has some limitations for the applications in primary hematopoietic stem cells and progenitor cells (HSPCs) as well as in human induced pluripotent stem cells (hiPSCs). Delivery of Cas9 protein in a form of ribonucleoprotein (RNP) in a complex with guide RNA (gRNA) provides a DNA free methodology, but a big hinderance of this application is that it is not possible to sort and enrich gene edited cells for further applications. Here we report the establishment of a new protocol of fluorescent labeling of the Cas9/gRNA ribonucleoprotein complex (CRISPR/Cas9-gRNA RNP). We designed crRNA for exon 1 of GADD45b gene, annealed this crRNA with transactivating crRNA (tracrRNA) to form gRNA and covalently introduced one fluorchrome agent (CX-rhodamine or fluorescein) per approximately every 20 nucleotides. HEK293FT cells, Jurkat T-ALL cell line, bone marrow CD34+ HSPCs, and iPSCs were transfected with fluorescently-labeled GADD45b CRISPR/Cas9-gRNA RNP by means of cathionic polymer based transfection reagent for HEK293FT cells and Lonza 4D nucleofection for Jurkat T-ALL cell line, CD34+ HSPCs, and iPSCs. We detected CX-rhodamine- or fluorescein intracellular signals 12 hours after transfection that disappeared approximately 48 hours post transfection. Transfection efficiency varied between 40 % and 80 %, depending on the cell type. Labeling did not affect integrity of crRNA/tracRNA duplex formation, gene editing efficiency and off-target activities of CRISPR/Cas9-gRNA RNP, as assessed by Sanger sequencing and TIDE assay of transfected HEK293FT cells, Jurkat cells, CD34+ HSPCs and human iPSCs. Using fluorescein- or CX-rhodamine signal of labeled CRISPR/Cas9-gRNA RNP, we sorted and enriched gene-edited cells. Gene modification efficiency in sorted cells was between 40 and 70 %, based on the cell type. Of note, we detected much lower transfection and editing efficiency of the fused Cas9-EGFP protein assembled with GADD45b targeting gRNA, as compared to CRISPR/Cas9-gRNA RNP. Most probably, conjugation of EGFP tag is affecting functions of CRISPR/Cas9- gRNA RNP. GADD45b (Growth Arrest And DNA Damage Inducible Beta), also termed myeloid differentiation primary response 118 gene (MyD118), belongs to a family of evolutionarily conserved GADD45 proteins (GADD45a, GADD45b and GADD45g) that function as stress sensors regulating cell cycle, survival and apoptosis in response to stress stimulus as ultraviolet (UV)-induced DNA damage and genotoxic stress. We further performed functional studies of the effect of GADD45b knockout on cell growth and sensitivity to UV-induced DNA damage. Remarkably, we detected severe diminished viability of GADD45b-deficient HEK293FT, Jurkat cells, iPSCs and CD34+ HSPCs as compared to control transfected cells. We also found markedly elevated susceptibility of GADD45b-deficient Jurkat cells, CD34+ HSPCs and iPSCs to UV induced DNA damage, as documented by elevated levels of γH2AX (pSer139). Based on these observations, we conclude that GADD45b knockout using transfection of cells with labeled GADD45b-targeting CRISPR/Cas9-gRNA RNP led to increased susceptibility to DNA damage. Moreover, GADD45b deficient iPSCs retained pluripotency, but they failed to differentiate to mature neutrophils in embryoid body (EB)-based culture. Taken together, this is the first report describing transfection and sorting of primary hematopoietic cells and iPSCs using fluorescently-labeled CRISPR/Cas9-RNP, which is simple, safe and efficient method, and therefore may strongly expand the therapeutic avenues for gene-edited cells. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 13-13
    Abstract: Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome. We recently reported a high frequency of cooperating RUNX1 and CSF3R mutations in CN patients that developed AML or MDS. To study the mechanism of leukemia development in CN, we established a model for step-wise leukemia progression in CN using iPSC-based hematopoietic differentiation in combination with CRISPR/Cas9-mediated gene editing of iPSCs. Using this model, we confirmed that co-acquisition of CSF3R and RUNX1 mutations is necessary and sufficient to induce leukemia in CN. We also identified BAALC (brain and acute leukemia, cytoplasmic) upregulation as a key leukemogenic event downstream of RUNX1 and CSF3R mutations. BAALC mRNA was upregulated in CN/AML blasts (n = 5) and in CD34+ HSPCs generated from CN/AML iPSCs of two patients. Importantly, CRISPR/Cas9-mediated knockout of BAALC in CN/AML-iPSCs reversed defective myeloid differentiation of CN/AML blasts to the levels observed in healthy donor hematopoietic stem cells. We further investigate the mechanism of BAALC up-regulation. In silico analysis of the BAALC gene promoter in combination to publicly available ChIP-Seq data revealed three putative RUNX1 binding sites that were validated using ChIP assay in lysates of NB4 cells. Interestingly, transduction of healthy donor CD34+ cells with lentiviral constructs expressing WT RUNX1 led to inhibition of BAALC mRNA expression, whereas transduction with two RUNX1 RUNT domain mutants resulted in the marked BAALC up-regulation, as compared to the control BFP transduced cells. These data suggest that mutated RUNX1 failed to inhibit BAALC expression in CD34+ HSPCs. To evaluate the mechanism of leukemogenic transformation in CN, we performed RNA-Seq analysis of CD34+ cells derived from CN and CN/AML iPSC clones. GSEA revealed that changes in gene expression between CN- and CN/AML-HSPCs were strongly correlated with gene expression signatures of "Wierenga STAT5 targets" and "reactome ATF4 targets", an observation in line with the markedly elevated levels of STAT5 and ATF4 in CN/AML-HSPCs. Importantly, gene expression differences between CN/AML-HSPCs and CN-HSPCs were correlated to "Valk AML" targets in GSEA, suggesting that HSPCs generated from CN/AML-iPSCs possess characteristics of AML cells. Strong support for the leukemogenic role of upregulated BAALC in CN/AML was provided by further GSEA analysis of the BAALC KO CN/AML-HSPCs. We observed a reversal in the expression of a majority of genes in the studied leukemia-associated pathways in CN/AML-HSPCs after BAALC knockout compared with CN/AML-HSPCs. Since there are no direct inhibitors for BAALC available and protein structure is not solved yet, BAALC effects can be targeted only indirectly. Morita et al., Leukemia, 2015 showed that BAALC potentiates oncogenic ERK pathway through interactions with MEKK1 and Klf4. We treated CD45+ cells generated from CN/AML or healthy donor (HD) iPSCs with MEK1/2- or MEK1-specific inhibitors or vehicle control and evaluated cell proliferation and differentiation (CFU assay). We were able to induce ~ 40-60 % cell death of CN/AML cells upon treatment with each of inhibitors, whereas HD CD45+ cells were unaffected. Moreover, treatment of CN/AML cells with MEK1/2 inhibitor led to an increase in CFU-G formation, as compared to vehicle control cells. Using connectivity Map analysis of RNA-Seq data of CD34+ cells generated from CN/AML iPSCs vs CN/AML BAALC KO iPSCs, we identified small molecule p38/MAPK14 inhibitor that could possibly reverse BAALC-mediated leukemogenic gene expression signature. We treated CN/AML iPSC-generated CD34+ cells for 7 days with this inhibitor and subsequently performed CFU assay. We found an increase in CFU-GM formation. In summary, using CN/AML-iPSC-model, we confirmed the major role of BAALC in leukemia development downstream of CSF3R and RUNX1 mutations in CN. Inhibition of MAPK/ERK-pathway downstream of BAALC reduced proliferation and partially induced myeloid differentiation of CN/AML-derived hematopoietic cells. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2199-2199
    Abstract: Previously, we described new mechanism of G-CSF-triggered granulocytic differentiation of hematopoietic stem cells (HSCs) via activation of the enzyme Nicotinamide Phosphorybosyltransferase (NAMPT) leading to NAD+ production and activation of NAD+ -dependent protein deacetylase sirtuin 1 (SIRT1). We found, that upon stimulation of HSCs with NAMPT, SIRT1 bound to the key myeloid transcription factor C/EBPα followed by transcriptional induction of C/EBPα target genes G-CSFR and G-CSF and granulocytic differentiation. In the present work we investigated the mechanism of NAMPT/SIRT1-triggered deacetylation of C/EBPα. We found that C/EBPα is acetylated at the position Lys 161, which is evolutionarily conserved. Lys 161 is localized in the transactivation element III (TE-III) of the transactivation domain (TAD) of C/EBPα protein, which is responsible for recruitment of SWI/SNF and CDK2/CDK4. Western blot and DUOLINK analysis using rabbit polyclonal antibody specifically recognizing acetyl-Lys 161 of C/EBPα revealed predominantly nuclear localization of acetylated C/EBPα protein in acute myeloid leukemia cell lines NB4 and HL60 as well as in primary HSCs. Induction of myeloid differentiation of HSCs by treatment with G-CSF as well as ATRA-induced differentiation of NB4 cells resulted in the deacetylation of C/EBPα. NAMPT inhibition in NB4 and HL60 cell lines using specific inhibitor FK866 led to the dramatically elevated levels of acetylated C/EBPα and reduced amounts of total C/EBPα protein, which was in line with diminished mRNA expression of C/EBPα target genes (G-CSF, G-CSFR and ELANE). Interestingly, treatment of acute myeloid leukemia cell line HL60 with NAMPT or transduction of HL-60 cells with NAMPT-expressing lentiviral construct induced myeloid differentiation of these cells even without addition of ATRA. This was in line with time- and dose-dependent increase of total C/EBPα protein levels upon NAMPT treatment. Therefore, NAMPT overcomes transcriptional repression of C/EBPα in HL-60 cells by activation of positive CEBPA autoregulation. Taken together, we described a new mechanism of regulation of C/EBPα activities in hematopoiesis and leukemogenesis by its post-translational modification via NAMPT/SIRT1-triggered de-/acetylation. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 644-644
    Abstract: Neutrophils are the most abundant cells of all white blood cells and play a key role in host inflammatory responses. Importantly, inflammation has been associated with increased susceptibility for cancer and neutrophils, as a crucial component of this process, play essential role in inflammation-driven tumorigenesis. Neutrophils also represent an independent prognostic marker in a broad variety of neoplasias. The tumor microenvironment represents a special niche that is extremely influencing infiltrating immune cells. The concept of immune cell polarization was first described for macrophages (anti-tumor M1/pro-tumor M2). Recently neutrophil polarization has been postulated. Neutrophils appear to have diverse phenotypes in the tumor microenvironment i.e. tumor promoting (N2) or inhibiting (N1). Previously, we could show that significantly elevated numbers of neutrophils accumulate in tumors of mice that lack endogenous type I IFNs (Ifnb1-/-). Such tumor associated neutrophils (TANs) do not only efficiently support tumor angiogenesis and growth by up-regulating pro-angiogenic molecules (VEGF and MMP9), but also secrete higher amounts of neutrophil-attracting chemokines and display prolonged survival, compared to their WT counterparts thus representing pro-tumor N2 phenotype. Moreover, we could show that these N2 neutrophils efficiently support metastatic processes, due to up-regulation of pro-metastatic proteins, like Bv8, MMP9, S100A8 and S100A9, and due to impaired tumor cell killing. Treatment of such cells with rmIFNb reversed such an effect leading to anti-tumor N1 polarization. Here, we add further evidence emphasizing the importance of type I IFNs for neutrophil polarization in tumor microenvironment and reveal possible mechanism responsible for this phenomenon. In Ifnb1-/- mice, we observe a significant down-regulation of anti-tumor neutrophil markers, like ICAM1 and TNF-α. Moreover, neutrophils show reduced formation of NETs, accompanied by lower tumor killing capacity. Under these conditions, massively enhanced neutrophil turnover in combination with accumulation of immature neutrophils is observed. Importantly, therapeutic intervention in both Ifnb1-/- and WT mice using low dose IFN-β, induced anti-tumor activation of neutrophils. Correspondingly, in human melanoma patients undergoing type I IFN therapy, neutrophil anti-tumor characteristics were augmented, compared to untreated patients, suggesting effective outcome of this therapy. Further, we evaluated the mechanism of prolonged neutrophil survival in the absence of endogenous IFN-β. Importantly, we found that G-CSF mRNA expression levels in Ifnb1-/- neutrophils from different anatomical compartments as well as G-CSF blood serum levels were markedly up-regulated in such mice. G-CSF-expression levels were strongly reduced when the Ifnb1-/- neutrophils were incubated with rmIFN-β suggesting involvement of type I interferons in G-CSF down-regulation. Notably, we could recently show that G-CSF induces synthesis of enzyme Nicotinamide phosphoribosyltransferase (NAMPT), which is a rate-limiting enzyme converting nicotinamide (NA) into NAD+ that in turn activates NAD+ -dependent protein deacetylases sirtuins (SIRTs). NAMPT serves as an inhibitor of neutrophil apoptosis and as neutrophil chemoattractant by upregulation of CXCL8. It is a potent pro-inflammatory factor (upregulation of ROS release) and pro-angiogenic factor (smooth muscle maturation). At the same time, NAMPT was found to be strongly overexpressed in tumors and serum of leukemia patients. Analysis of NAMPT and SIRTs levels in tumor bearing Ifnb1-/- mice revealed highly upregulated levels of NAMPT and SIRT1 in blood neutrophils of these animals, in comparison to WT mice, which was in line with elevated levels of G-CSF. It also correlates with enhanced tumor angiogenesis, growth and metastasis. Based on these observations, we identified a new mechanism of interferon-mediated activation of pro-tumor neutrophils. Since tumor associated neutrophils represent a highly potent therapeutic target, these data highlight the therapeutic potential of interferons and NAMPT inhibitors, suggesting optimization of their clinical use as potent anti-tumor agent. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...