GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 521, No. 3 ( 2023-03-23), p. 4356-4374
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 521, No. 3 ( 2023-03-23), p. 4356-4374
    Abstract: The observability of Lyα emitting galaxies (LAEs) during the Epoch of Reionization can provide a sensitive probe of the evolving neutral hydrogen gas distribution, thus setting valuable constraints to distinguish different reionization models. In this study, we utilize the new thesan suite of large-volume ($L_\text{box} = 95.5\, \text{cMpc}$) cosmological radiation-hydrodynamic simulations to directly model the Lyα emission from individual galaxies and the subsequent transmission through the intergalactic medium. thesan combines the arepo-rt radiation-hydrodynamic solver with the IllustrisTNG galaxy formation model and includes high- and medium-resolution simulations designed to investigate the impacts of halo-mass-dependent escape fractions, alternative dark matter models, and numerical convergence. We find important differences in the Lyα transmission based on reionization history, bubble morphology, frequency offset from line centre, and galaxy brightness. For a given global neutral fraction, Lyα transmission reduces when low-mass haloes dominate reionization over high-mass haloes. Furthermore, the variation across sightlines for a single galaxy is greater than the variation across all galaxies. This collectively affects the visibility of LAEs, directly impacting observed Lyα luminosity functions (LFs). We employ Gaussian Process Regression using SWIFTEmulator to rapidly constrain an empirical model for dust escape fractions and emergent spectral-line profiles to match observed LFs. We find that dust strongly impacts the Lyα transmission and covering fractions of MUV ≲ −19 galaxies in $M_\text{vir} \gtrsim 10^{11}\, \text{M}_{\bigodot }$ haloes, such that the dominant mode of removing Lyα photons in non-LAEs changes from low-IGM transmission to high dust absorption around z ∼ 7.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2018
    In:  Monthly Notices of the Royal Astronomical Society Vol. 481, No. 2 ( 2018-12-01), p. 1809-1831
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 481, No. 2 ( 2018-12-01), p. 1809-1831
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 488, No. 3 ( 2019-09-21), p. 3003-3013
    Abstract: Understanding how baryonic processes shape the intracluster medium (ICM) is of critical importance to the next generation of galaxy cluster surveys. However, many models of structure formation neglect potentially important physical processes, like anisotropic thermal conduction (ATC). We explore the impact of ATC on the prevalence of cool-cores (CCs) via 12 pairs of magnetohydrodynamical galaxy cluster simulations, using the IllustrisTNG model with and without ATC. Examining their properties we find that the addition of ATC has a negligible impact on the median rotation measure, plasma β, the magnetic field-radial direction angle, and the effective Spitzer value. However, the scatter in the angle and effective Spitzer value is 50 per cent larger with ATC because the magnetic field aligns with the azimuthal direction to a greater extent in relaxed clusters. ATC’s impact varies from cluster to cluster and with CC criterion, but its inclusion produces a systematic shift to larger CC fractions at z = 0 for all CC criteria considered. Additionally, the inclusion of ATC flattens the CC fraction redshift evolution, helping to ease the tension with the observed evolution. With ATC, the energy required for the central black hole to self-regulate is reduced by 24 per cent and the gas fraction at $0.01\, r_{500}$ increases by 100 per cent, producing larger CC fractions. ATC makes the ICM unstable to perturbations and the increased efficiency of AGN feedback suggests that its inclusion results in a greater level of mixing in the ICM, demonstrated by the 10 per cent reduction in central metallicity for clusters with ATC.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2020
    In:  Monthly Notices of the Royal Astronomical Society Vol. 499, No. 4 ( 2020-11-06), p. 5732-5748
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 499, No. 4 ( 2020-11-06), p. 5732-5748
    Abstract: We present a novel framework to self-consistently model the effects of radiation fields, dust physics, and molecular chemistry (H2) in the interstellar medium (ISM) of galaxies. The model combines a state-of-the-art radiation hydrodynamics module with a H  and He  non-equilibrium thermochemistry module that accounts for H2 coupled to an empirical dust formation and destruction model, all integrated into the new stellar feedback framework SMUGGLE. We test this model on high-resolution isolated Milky-Way (MW) simulations. We show that the effect of radiation feedback on galactic star formation rates is quite modest in low gas surface density galaxies like the MW. The multiphase structure of the ISM, however, is highly dependent on the strength of the interstellar radiation field. We are also able to predict the distribution of H2, that allow us to match the molecular Kennicutt–Schmidt (KS) relation, without calibrating for it. We show that the dust distribution is a complex function of density, temperature, and ionization state of the gas. Our model is also able to match the observed dust temperature distribution in the ISM. Our state-of-the-art model is well-suited for performing next-generation cosmological galaxy formation simulations, which will be able to predict a wide range of resolved (∼10 pc) properties of galaxies.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 525, No. 3 ( 2023-09-01), p. 3254-3261
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 525, No. 3 ( 2023-09-01), p. 3254-3261
    Abstract: JWST observations have revealed a population of galaxies bright enough that potentially challenge standard galaxy formation models in the Λ cold dark matter (ΛCDM) cosmology. Using a minimal empirical framework, we investigate the influence of variability on the rest-frame ultra-violet (UV) luminosity function of galaxies at z ≥ 9. Our study differentiates between the median UV radiation yield and the variability of UV luminosities of galaxies at a fixed dark matter halo mass. We primarily focus on the latter effect, which depends on halo assembly and galaxy formation processes and can significantly increase the abundance of UV-bright galaxies due to the upscatter of galaxies in lower-mass haloes. We find that a relatively low level of variability, σUV ≈ 0.75 mag, matches the observational constraints at z ≈ 9. However, increasingly larger σUV is necessary when moving to higher redshifts, reaching $\sigma _{\rm UV} \approx 2.0\, (2.5)\, {\rm mag}$ at z ≈ 12 (16). This implied variability is consistent with expectations of physical processes in high-redshift galaxies such as bursty star formation and dust clearance during strong feedback cycles. Photometric constraints from JWST at z ≳ 9 therefore can be reconciled with a standard ΛCDM-based galaxy formation model calibrated at lower redshifts without the need for adjustments to the median UV radiation yield.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2019
    In:  Monthly Notices of the Royal Astronomical Society Vol. 488, No. 1 ( 2019-09-01), p. 419-437
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 488, No. 1 ( 2019-09-01), p. 419-437
    Abstract: We present self-consistent radiation hydrodynamic simulations of hydrogen reionization performed with arepo-rt complemented by a state-of-the-art galaxy formation model. We examine how photoheating feedback, due to reionization, shapes the galaxies properties. Our fiducial model completes reionization by z ≈ 6 and matches observations of the Ly α forest, the cosmic microwave background electron scattering optical depth, the high-redshift ultraviolet (UV) luminosity function, and stellar mass function. Contrary to previous works, photoheating suppresses star formation rates by more than $50{{\ \rm per\ cent}}$ only in haloes less massive than ∼108.4 M⊙ (∼108.8 M⊙) at z = 6 (z = 5), suggesting inefficient photoheating feedback from photons within galaxies. The use of a uniform UV background that heats up the gas at z ≈ 10.7 generates an earlier onset of suppression of star formation compared to our fiducial model. This discrepancy can be mitigated by adopting a UV background model with a more realistic reionization history. In the absence of stellar feedback, photoheating alone is only able to quench haloes less massive than ∼109 M⊙ at z ≳ 5, implying that photoheating feedback is sub-dominant in regulating star formation. In addition, stellar feedback, implemented as a non-local galactic wind scheme in the simulations, weakens the strength of photoheating feedback by reducing the amount of stellar sources. Most importantly, photoheating does not leave observable imprints in the UV luminosity function, stellar mass function, or the cosmic star formation rate density. The feasibility of using these observables to detect imprints of reionization therefore requires further investigation.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2017
    In:  Monthly Notices of the Royal Astronomical Society Vol. 465, No. 3 ( 2017-03-01), p. 2966-2982
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 465, No. 3 ( 2017-03-01), p. 2966-2982
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2023
    In:  Monthly Notices of the Royal Astronomical Society Vol. 525, No. 4 ( 2023-09-11), p. 5932-5950
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 525, No. 4 ( 2023-09-11), p. 5932-5950
    Abstract: The feedback loop between the galaxies producing the background radiation field for reionization and their growth is crucial, particularly for low-mass haloes. Despite this, the vast majority of galaxy formation studies employ a spatially uniform, time-varying reionizing background, with the majority of reionization studies employing galaxy formation models only required to work at high redshift. This paper uses the well-studied TNG galaxy formation model, calibrated at low redshift, coupled to the arepo-rt code, to self-consistently solve the coupled problems of galaxy evolution and reionization, evaluating the impact of patchy (and slow) reionization on early galaxies. thesan-hr is an extension of the thesan project to higher resolution (a factor of 50 increase, with a baryonic mass of mb ≈ 104 M⊙), to additionally enable the study of ‘mini-haloes’ with virial temperatures Tvir & lt; 104 K. Comparing the self-consistent model to a uniform UV background, we show that galaxies in thesan-hr are predicted to be larger in physical extent (by a factor ∼2), less metal enriched (by ∼0.2 dex), and less abundant (by a factor ∼10 at M1500 =   − 10) by z = 5. We show that differences in star formation and enrichment patterns lead to significantly different predictions for star formation in low mass haloes, low-metallicity star formation, and even the occupation fraction of haloes. We posit that cosmological galaxy formation simulations aiming to study early galaxy formation (z ≳ 3) must employ a spatially inhomogeneous UV background to accurately reproduce galaxy properties.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Astronomical Society ; 2017
    In:  The Astrophysical Journal Vol. 837, No. 2 ( 2017-03-07), p. L18-
    In: The Astrophysical Journal, American Astronomical Society, Vol. 837, No. 2 ( 2017-03-07), p. L18-
    Type of Medium: Online Resource
    ISSN: 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2017
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2021
    In:  Monthly Notices of the Royal Astronomical Society Vol. 502, No. 1 ( 2021-02-03), p. 1344-1354
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 502, No. 1 ( 2021-02-03), p. 1344-1354
    Abstract: We present a model for the interaction between dust and radiation fields in the radiation hydrodynamic code arepo-rt, which solves the moment-based radiative transfer equations on an unstructured moving mesh. Dust is directly treated using live simulation particles, each of which represent a population of grains that are coupled to hydrodynamic motion through a drag force. We introduce methods to calculate radiation pressure on and photon absorption by dust grains. By including a direct treatment of dust, we are able to calculate dust opacities and update radiation fields self-consistently based on the local dust distribution. This hybrid scheme coupling dust particles to an unstructured mesh for radiation is validated using several test problems with known analytic solutions, including dust driven via spherically symmetric flux from a constant luminosity source and photon absorption from radiation incident on a thin layer of dust. Our methods are compatible with the multifrequency scheme in arepo-rt, which treats UV, optical photons as single scattered and IR photons as multi scattered. At IR wavelengths, we model heating of and thermal emission from dust. Dust and gas are not assumed to be in local thermodynamic equilibrium but transfer energy through collisional exchange. We estimate dust temperatures by balancing these dust-radiation and dust-gas energy exchange rates. This framework for coupling dust and radiation can be applied in future radiation hydrodynamic simulations of galaxy formation.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...