GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: EMBO Molecular Medicine, EMBO, Vol. 14, No. 4 ( 2022-04-07)
    Type of Medium: Online Resource
    ISSN: 1757-4676 , 1757-4684
    Language: English
    Publisher: EMBO
    Publication Date: 2022
    detail.hit.zdb_id: 2485479-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 14_Supplement ( 2020-07-15), p. IA13-IA13
    Abstract: Despite the increase in overall child cancer survival rates, pediatric malignancies such as high-risk neuroblastoma, high-risk leukemias (including MLL-translocated infant ALL), and aggressive brain tumors (including DIPG) remain refractory to current multimodal therapies. We have been developing new treatment approaches for these aggressive childhood cancers by (i) utilizing novel targeted therapies either alone or combined with other new agents or established chemotherapeutic drugs, and (ii) by developing new drugs that target key pathways in these child cancers. In neuroblastoma, we have targeted polyamines, showing that combined inhibition of polyamine synthesis by the ODC1 inhibitor DFMO, and of polyamine uptake using the small-molecule drug AMXT 1501, is highly effective at inhibiting tumor growth in Th-MYCN transgenic mice. This combination also shows great efficacy in preclinical models of DIPG, and clinical trials for these diseases are now being planned. We are also targeting metabolism of arginine, the precursor of ornithine, using the pegylated-recombinant arginase BCT-100, which significantly delays tumor development and prolongs survival of neuroblastoma-prone Th-MYCN mice. We have further shown that combining BCT-100 with either DFMO or conventional chemotherapy results in increased survival benefit. CBL0137 is a nontoxic novel anticancer drug currently in phase I trial for adult refractory and relapsed cancers. CBL0137 destabilizes nucleosomes and traps histone chaperone FACT into chromatin, thereby modulating several anticancer mechanisms. We have shown that CBL0137 is effective in mouse models of neuroblastoma, MLL-rearranged leukemia, and DIPG, and that its action is potentiated by the HDAC inhibitor, panobinostat. Moreover, we have developed OT-82, a novel nontoxic NAMPT inhibitor with impressive anticancer activity against mouse models of high-risk childhood ALL, potentiating standard-of-care drugs, and showing similar efficacy as the three-drug induction-type treatment used for pediatric ALL. In addition, for all Australian children with high-risk malignancies, we have developed the Zero Childhood Cancer national precision medicine program. ZERO utilizes whole-genome and whole-transcriptome sequencing, methylation profiling, and where possible, in vitro and in vivo drug testing. To date (July 2019), 74% of 207 patients on the national clinical trial have received a Multidisciplinary Tumor Board recommendation (therapy, germline referral, or change of diagnosis), and of 25 patients with evaluable response data thus far who have received the ZERO recommended therapy, a significant proportion have had a complete response, partial response, or maintained stable disease. Moreover, early experience with drug efficacy studies suggests these data may corroborate genomic therapeutic recommendations and may also identify unanticipated active therapeutics. Citation Format: Michelle Haber, Laura Gamble, Lin Xiao, Ruby Pandher, Klaartje Somers, Jayne Murray, Aaminah Khan, Denise Yu, Laura Franshaw, Mark R. Burns, Maria Tsoli, Anahid Ehteda, Anthony Cesare, Aisling O’Connor, Francis Mussai, Carmela de Santo, Paul Cheng, Lioubov Korotchkina, Katerina Gurova, Vanessa Tyrrell, Emily Mould, Loretta Lau, Dong Anh Khuong Quang, Chelsea Mayoh, Greg Arndt, Paulette Barahona, Tim Failes, Jamie Fletcher, Noemi Fuentes- Bolanos, Marie-Emilie Gauthier, Andrew Gifford, Dylan Grebert-Wade, Alvin Kamili, Amit Kumar, Sumanth Nagabushan, Tracey O’Brien, Patrick Strong, Alexandra Sherstyuk, David Thomas, Toby Trahair, Katherine Tucker, Meera Warby, Marie Wong, Jinhan Xie, Kathryn Evans, Richard Lock, Olga B. Chernova, Michelle Henderson, Andrei V Gudkov, Paul Ekert, Mark J. Cowley, Glenn M. Marshall, David S. Ziegler, Murray D. Norris. Molecular targeted therapies and precision medicine for children with neuroblastoma and other refractory malignancies [abstract]. In: Proceedings of the AACR Special Conference on the Advances in Pediatric Cancer Research; 2019 Sep 17-20; Montreal, QC, Canada. Philadelphia (PA): AACR; Cancer Res 2020;80(14 Suppl):Abstract nr IA13.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: British Journal of Cancer, Springer Science and Business Media LLC, Vol. 126, No. 3 ( 2022-02-01), p. 482-491
    Abstract: Minimal residual disease (MRD) measurement is a cornerstone of contemporary acute lymphoblastic leukaemia (ALL) treatment. The presence of immunoglobulin (Ig) and T cell receptor (TCR) gene recombinations in leukaemic clones allows widespread use of patient-specific, DNA-based MRD assays. In contrast, paediatric solid tumour MRD remains experimental and has focussed on generic assays targeting tumour-specific messenger RNA, methylated DNA or microRNA. Methods We examined the feasibility of using whole-genome sequencing (WGS) data to design tumour-specific polymerase chain reaction (PCR)-based MRD tests (WGS-MRD) in 18 children with high-risk relapsed cancer, including ALL, high-risk neuroblastoma (HR-NB) and Ewing sarcoma (EWS) ( n  = 6 each). Results Sensitive WGS-MRD assays were generated for each patient and allowed quantitation of 1 tumour cell per 10 −4 (0.01%)–10 –5 (0.001%) mononuclear cells. In ALL, WGS-MRD and Ig/TCR-MRD were highly concordant. WGS-MRD assays also showed good concordance between quantitative PCR and droplet digital PCR formats. In serial clinical samples, WGS-MRD correlated with disease course. In solid tumours, WGS-MRD assays were more sensitive than RNA-MRD assays. Conclusions WGS facilitated the development of patient-specific MRD tests in ALL, HR-NB and EWS with potential clinical utility in monitoring treatment response. WGS data could be used to design patient-specific MRD assays in a broad range of tumours.
    Type of Medium: Online Resource
    ISSN: 0007-0920 , 1532-1827
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2002452-6
    detail.hit.zdb_id: 80075-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 16 ( 2023-08-15), p. 2716-2732
    Abstract: For one-third of patients with pediatric cancer enrolled in precision medicine programs, molecular profiling does not result in a therapeutic recommendation. To identify potential strategies for treating these high-risk pediatric patients, we performed in vitro screening of 125 patient-derived samples against a library of 126 anticancer drugs. Tumor cell expansion did not influence drug responses, and 82% of the screens on expanded tumor cells were completed while the patients were still under clinical care. High-throughput drug screening (HTS) confirmed known associations between activating genomic alterations in NTRK, BRAF, and ALK and responses to matching targeted drugs. The in vitro results were further validated in patient-derived xenograft models in vivo and were consistent with clinical responses in treated patients. In addition, effective combinations could be predicted by correlating sensitivity profiles between drugs. Furthermore, molecular integration with HTS identified biomarkers of sensitivity to WEE1 and MEK inhibition. Incorporating HTS into precision medicine programs is a powerful tool to accelerate the improved identification of effective biomarker-driven therapeutic strategies for treating high-risk pediatric cancers. Significance: Integrating HTS with molecular profiling is a powerful tool for expanding precision medicine to support drug treatment recommendations and broaden the therapeutic options available to high-risk pediatric cancers.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 27, No. 5 ( 2021-03-01), p. 1438-1451
    Abstract: TERT gene rearrangement with transcriptional superenhancers leads to TERT overexpression and neuroblastoma. No targeted therapy is available for clinical trials in patients with TERT-rearranged neuroblastoma. Experimental Design: Anticancer agents exerting the best synergistic anticancer effects with BET bromodomain inhibitors were identified by screening an FDA-approved oncology drug library. The synergistic effects of the BET bromodomain inhibitor OTX015 and the proteasome inhibitor carfilzomib were examined by immunoblot and flow cytometry analysis. The anticancer efficacy of OTX015 and carfilzomib combination therapy was investigated in mice xenografted with TERT-rearranged neuroblastoma cell lines or patient-derived xenograft (PDX) tumor cells, and the role of TERT reduction in the anticancer efficacy was examined through rescue experiments in mice. Results: The BET bromodomain protein BRD4 promoted TERT-rearranged neuroblastoma cell proliferation through upregulating TERT expression. Screening of an approved oncology drug library identified the proteasome inhibitor carfilzomib as the agent exerting the best synergistic anticancer effects with BET bromodomain inhibitors including OTX015. OTX015 and carfilzomib synergistically reduced TERT protein expression, induced endoplasmic reticulum stress, and induced TERT-rearranged neuroblastoma cell apoptosis which was blocked by TERT overexpression and endoplasmic reticulum stress antagonists. In mice xenografted with TERT-rearranged neuroblastoma cell lines or PDX tumor cells, OTX015 and carfilzomib synergistically blocked TERT expression, induced tumor cell apoptosis, suppressed tumor progression, and improved mouse survival, which was largely reversed by forced TERT overexpression. Conclusions: OTX015 and carfilzomib combination therapy is likely to be translated into the first clinical trial of a targeted therapy in patients with TERT-rearranged neuroblastoma.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3111-3111
    Abstract: Molecular genomics analyses aim to identify subsets of patients harboring actionable aberrations as a pathway to improved targeted treatment selection. However, recent pan-cancer analyses of the molecular landscape of pediatric cancers1,2 have emphasized the stark contrast with adult cancers, with low mutation rates, distinct mutated genes and a prevalence of structural rearrangements suggesting that genomic analyses alone have limitations for translation into clinical benefit. The Zero Childhood Cancer (ZCC) program aims to assess the feasibility of precision medicine to identify targeted therapeutic agents for patients with high-risk (HR) pediatric malignancies (expected survival & lt;30%). We combine comprehensive molecular profiling analysis [whole genome sequencing (tumor, germline DNA), deep sequencing of a 386 cancer associated gene panel, whole transcriptome (RNASeq), methylation profiling] with in vitro high-throughput drug screening (124 compound library, single agent) and patient-derived xenograft (PDX) drug efficacy testing. Results are curated and recommendations made by a national Multidisciplinary Tumor Board. Recommendations consist of targeted therapy, change of diagnosis or genetics referral for a germline cancer predisposition gene mutation. The national multicenter prospective trial (PRISM) opened in September 2017 at all 8 pediatric oncology centers around Australia, following the successful completion of a 2-year pilot feasibility study. PRISM has enrolled 131 patients to date (35% central nervous system tumors, 29% sarcoma, 13% leukemias/lymphomas, 6% neuroblastoma, 17% other rare or unknown cancers). The unique ZCC testing platform has resulted in at least one recommendation being issued for 67% of patients. Fifteen % of patients have a reportable germline cancer predisposition. We have developed an analytical pipeline to interrogate and cross-validate the full range of variants, structural abnormalities and mutational signatures identified in pediatric cancers and incorporate the molecular data with in vitro and in vivo drug sensitivity data where possible. The highest yield of reportable variants is derived from the integrated analysis of WGS and RNASeq; unique to ZCC compared to other pediatric precision medicine programs internationally. ZCC demonstrates the feasibility of a comprehensive precision medicine platform to identify treatment recommendations in HR pediatric cancer patients. The national trial is planned to run for 3 years, recruiting ~400 patients. In addition, ZCC is partnering nationally and internationally to conduct parallel research studies in immunoprofiling, liquid biopsy, psychosocial impact of precision medicine, health economics and health implementation. 1. Gröbner et al. Nature. 2018; 555(7696):321-327. 2. Ma et al. Nature. 2018; 555(7696):371-376. Citation Format: Emily V. Mould, Loretta Lau, Greg Arndt, Paulette Barahona, Mark J. Cowley, Paul Ekert, Tim Failes, Jamie Fletcher, Andrew Gifford, Dylan Grebert-Wade, Michelle Haber, Alvin Kamili, Amit Kumar, Richard B. Lock, Glenn M. Marshall, Chelsea Mayoh, Murray Norris, Tracey O'Brien, Dong Anh Khuong Quang, Patrick Strong, Alexandra Sherstyuk, Toby Trahair, Maria Tsoli, Katherine Tucker, Meera Warby, Marie Wong, Jinhan Xie, David S. Ziegler, Vanessa Tyrrell. Zero Childhood Cancer: A comprehensive precision medicine platform for children with high-risk cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3111.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...