GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Immunology, Immunotherapy, Springer Science and Business Media LLC, Vol. 57, No. 2 ( 2007-11-19), p. 175-183
    Type of Medium: Online Resource
    ISSN: 0340-7004 , 1432-0851
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2007
    detail.hit.zdb_id: 1458489-X
    detail.hit.zdb_id: 195342-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Molecular Therapy, Elsevier BV, Vol. 23, No. 4 ( 2015-04), p. 648-655
    Type of Medium: Online Resource
    ISSN: 1525-0016
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2015
    detail.hit.zdb_id: 2010592-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal for ImmunoTherapy of Cancer, BMJ, Vol. 10, No. 3 ( 2022-03), p. e003882-
    Abstract: In lymphoid malignancies, the introduction of chimeric antigen receptor T (CAR-T) cells and bispecific antibodies (bsAbs) has achieved remarkable clinical success. However, such immunotherapeutic strategies are not yet established for acute myeloid leukemia (AML), the most common form of acute leukemia in adults. Common targets in AML such as CD33, CD123, and CLEC12A are highly expressed on both AML blasts and on normal myeloid cells and hematopoietic stem cells (HSCs), thereby raising toxicity concerns. In B-cell acute lymphoblastic leukemia (B-ALL), bsAbs and CAR-T therapy targeting CD19 and CD22 have demonstrated clinical success, but resistance via antigen loss is common, motivating the development of agents focused on alternative targets. An attractive emerging target is FLT3, a proto-oncogene expressed in both AML and B-ALL, with low and limited expression on myeloid dendritic cells and HSCs. Methods We developed and characterized CLN-049, a T cell-activating bsAb targeting CD3 and FLT3, constructed as an IgG heavy chain/scFv fusion. CLN-049 binds the membrane proximal extracellular domain of the FLT3 protein tyrosine kinase, which facilitates the targeting of leukemic blasts regardless of FLT3 mutational status. CLN-049 was evaluated for preclinical safety and efficacy in vitro and in vivo. Results CLN-049 induced target-restricted activation of CD4+ and CD8+ T cells. AML cell lines expressing a broad range of surface levels of FLT3 were efficiently lysed on treatment with subnanomolar concentrations of CLN-049, whereas FLT3-expressing hematopoietic progenitor cells and dendritic cells were not sensitive to CLN-049 killing. Treatment with CLN-049 also induced lysis of AML and B-ALL patient blasts by autologous T cells at the low effector-to-target ratios typically observed in patients with overt disease. Lysis of leukemic cells was not affected by supraphysiological levels of soluble FLT3 or FLT3 ligand. In mouse xenograft models, CLN-049 was highly active against human leukemic cell lines and patient-derived AML and B-ALL blasts. Conclusions CLN-049 has a favorable efficacy and safety profile in preclinical models, warranting evaluation of its antileukemic activity in the clinic.
    Type of Medium: Online Resource
    ISSN: 2051-1426
    Language: English
    Publisher: BMJ
    Publication Date: 2022
    detail.hit.zdb_id: 2719863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Molecular Medicine, Springer Science and Business Media LLC, Vol. 88, No. 7 ( 2010-7), p. 687-699
    Type of Medium: Online Resource
    ISSN: 0946-2716 , 1432-1440
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2010
    detail.hit.zdb_id: 1462132-0
    detail.hit.zdb_id: 1223802-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 2309-2309
    Abstract: NK cells are cytotoxic lymphocytes that play a major role in anti-tumor immunity and largely contribute to the efficacy of allogenic stem cell transplantation (SCT) in leukemia. Another clinically important feature of NK cells is their ability to mediate antibody-dependent cellular cytotoxicity (ADCC) upon application of monoclonal antibodies (mAb) like Rituximab, a feature considered critical for the therapeutic success of antibody treament. Modifications of the human IgG1 Fc-part in anti-tumor antibodies lead to markedly improved capability to recruit Fc-receptor bearing effector cells as highlighted by the improved clinical efficacy of the Fc-engineered CD20 antibody Ofatumumab as compared to its unmodified counterpart Rituximab in CLL. So far, no immunotherapeutic antibodies are available for the treatment of myeloid leukemias. Here we report on the development and preclinical characterization of an Fc-optimized mAb directed towards CD133, which is expressed on a wide variety of malignant cell types. As a first step we evaluated binding of three different mouse anti-human CD133 mAbs (clones AC133, W6B3 and 293C3) to 20 primary AML and 6 primary CML samples in order to identify a clone with optimal binding characteristics. AC133 and W6B3 comparably bound to the leukemic cells in 11/20 AML and 5/6 CML samples. In contrast, binding of 293C3 was observed in 18/20 AML cases and 5/6 CML cases. Thus, 293C3 recognizes a different epitope than the other two antibody clones, which is expressed in a high proportion of myeloid leukemia cases. Accordingly, 293C3 was selected for generating chimeric mAbs with either a wildtype Fc part (293C3-WT) or a variant containing distinct modifications (S239D/I332E) to enhance its affinity to the activating Fc receptor CD16 (293C3-SDIE). The binding specificity of 293C3-WT and 293C3-SDIE was validated by FACS in analyses with CD133 transfectants and mock controls. When comparing 293C3-WT and 293C3-SDIE with regard to their immunostimulatory properties, we found that already 293C3-WT induced NK cell ADCC against primary leukemia cells as revealed by analyses of degranulation and target cell lysis. These effects were by far exceeded by treatment with 293C3-SDIE, confirming the functional relevance of the SDIE modification in its Fc part. Notably, treatment with 293C3-SDIE also enhanced the reactivity of NK cells against CD133-positive AML cells in an autologous setting. Considering the expression of CD133, among others, on healthy hematopoietic progenitor cells, we further performed colony forming unit assays with healthy bone marrow cells, which did not reveal any toxicity of 293C3-SDIE at the level of committed hematopoietic progenitor cells. Thus, 293C3-SDIE constitutes an attractive immunotherapeutic compound which we envisage in particular for the elimination of minimal residual disease in CD133 bearing leukemia, especially in the context of allogenic SCT. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 2187-2187
    Abstract: Abstract 2187 For more than a decade, chimeric/humanized second generation monoclonal antibodies (mAb) are used in cancer therapy. While their success e.g. in lymphoma therapy is undisputed, mAb are not established as treatment for acute myeloid leukemia (AML). Moreover, the therapeutic activity of available mAb leaves ample room for improvement. In the recent years, modifications of the human IgG1 Fc-part have enabled the development of third generation mAb with markedly improved capability to recruit Fc-receptor bearing immune effector cells. We here report on the development and evaluation of an Fc-optimized mAb directed to FLT3, an antigen expressed on leukemic cells of the majority of AML patients. In vitro, this antibody termed 4G8-SDIEM effectively induced antibody-dependent cellular cytotoxicity (ADCC) against FLT3-expressing AML cells at concentrations as low as 10ng/ml. Compared to the parental humanized antibody, the ADCC activity of 4G8-SDIEM was increased by a factor of 100. FLT3 expression on primary AML cells (range, 500–5000 molecules) was considerably higher as compared to healthy hematopoietic cells (several hundred molecules). 4G8-SDIEM did not induce relevant ADCC against healthy cells and did not decrease the CFU-forming capacity of bone marrow (BM) cells in vitro. The mAb was then produced in pharmaceutical quality and quantity at a university-owned production unit and used for compassionate need treatment of a 30 year old AML patient (FAB M0, complex kariotype with 45, XY, inv(3)(q21q26), -7, 9q-) with relapse after haploidentical and unrelated donor stem cell transplantation (SCT). Preclinical testing revealed that 4G8-SDIEM effectively induced ADCC of the patients peripheral blood (PB) mononuclear cells (PBMC) against NALM16 leukemia cells and autologous leukemic blasts. Directly before initiation of treatment, the percentage of leukemic blasts among the patients PBMC was 11% and 38% in PB and BM, respectively, and his AML cells displayed homogeneous FLT3 expression. The percentage of NK cells (CD56+CD3-) was 7% and 5% in PB and BM, respectively, with less than 2% displaying an activated phenotype (CD69+). 4G8-SDIEM was applied in escalating doses (d1: 10μg; d2: 100μg; d3: 1mg; d4: 2mg; d5, 7, 10: 10mg). Several hours after the first 10 mg-dose 5×108 CD3/CD19-depleted donor lymphocytes were infused. Besides elevated temperature (max. 38.2°C), no relevant side effects of treatment were observed. After the first first 10mg dose, BM blasts were nearly saturated with mAb as judged by crosscompetition assays. Serum concentration of 4G8-SDIEM reached 1.0μg/ml 1h after the first 10mg dose declining to 0.4 μg/ml 24h later. Upon treatment, serum levels of the index cytokines TNF and IL-6 (peak d4, 60 and 27pg/ml, respectively) and the percentage of activated NK cells (peak d6, 42%) in PB increased rapidly. Already at day 4, leukemic blasts were nearly completely cleared from the PB ( 〈 2%), while effects in BM were less pronounced (down to 15%) indicating that lower effector to target cell ratios in the BM limit the therapeutic activity of the mAb. In any case, the anti-leukemic effects of 4G8-SDIEM remained transient, as 10 days after initiation of therapy blast counts in PB and BM reached and later exceeded pre-treatment levels. Thus we conclude that although 4G8-SDIEM clearly exerts anti-leukemic effects in vivo, it may not be capable of inducing long-lasting responses of AML in proliferative phase. Rather, we envisage application of the mAb in settings with suitably high effector to target cell ratios such as minimal residual disease in morphological complete remission, possibly in combination with adoptive NK cell transfer. As of now, development of 4G8-SDIEM cost |CE2 million and required 2.5 years from bench to bedside. Thus, development and early clinical evaluation of novel mAb can be achieved at academic institutions at reasonable costs and time before initiation of larger clinical Phase II/III studies by the pharmaceutical industry. Such an approach may not only accelerate the developmental process for anti-tumor mAb, but rather for innovative biological drugs in general. Disclosures: Hofmann: University of Tuebingen, Germany: Patents & Royalties. Grosse-Hovest: University of Tuebingen, Germany: Patents & Royalties. Aulwurm: University of Tuebingen, Germany: Patents & Royalties. Buehring: University of Tuebingen, Germany: Patents & Royalties. Jung: University of Tuebingen, Germany: Patents & Royalties.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancers, MDPI AG, Vol. 11, No. 12 ( 2019-12-06), p. 1966-
    Abstract: Antibody-dependent cellular cytotoxicity (ADCC) is a major mechanism by which antitumor antibodies mediate therapeutic efficacy. At present, we evaluate an Fc-optimized (amino acid substitutions S239D/I332E) FLT3 antibody termed 4G8-SDIEM (FLYSYN) in patients with acute myeloid leukemia (NCT02789254). Here we studied the possibility to induce NK cell ADCC against B-cell acute lymphoblastic leukemia (B-ALL) by Fc-optimized FLT3 antibody treatment. Flow cytometric analysis confirmed that FLT3 is widely expressed on B-ALL cell lines and leukemic cells of B-ALL patients. FLT3 expression did not correlate with that of CD20, which is targeted by Rituximab, a therapeutic monoclonal antibody (mAb) employed in B-ALL treatment regimens. Our FLT3 mAb with enhanced affinity to the Fc receptor CD16a termed 4G8-SDIE potently induced NK cell reactivity against FLT3-transfectants, the B-ALL cell line SEM and primary leukemic cells of adult B-ALL patients in a target-antigen dependent manner as revealed by analyses of NK cell activation and degranulation. This was mirrored by potent 4G8-SDIE mediated NK cell ADCC in experiments with FLT3-transfectants, the cell line SEM and primary cells as target cells. Taken together, the findings presented in this study provide evidence that 4G8-SDIE may be a promising agent for the treatment of B-ALL, particularly in CD20-negative cases.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Cancers, MDPI AG, Vol. 11, No. 6 ( 2019-06-07), p. 789-
    Abstract: The introduction of monoclonal antibodies (mAbs) has largely improved treatment options for cancer patients. The ability of antitumor mAbs to elicit antibody-dependent cellular cytotoxicity (ADCC) contributes to a large extent to their therapeutic efficacy. Many efforts accordingly aim to improve this important function by engineering mAbs with Fc parts that display enhanced affinity to the Fc receptor CD16 expressed, e.g., on natural killer (NK) cells. Here we characterized the CD133 mAb 293C3-SDIE that contains an engineered Fc part modified by the amino acid exchanges S239D/I332E—that reportedly increase the affinity to CD16—with regard to its ability to induce NK reactivity against colorectal cancer (CRC). 293C3-SDIE was found to be a stable protein with favorable binding characteristics achieving saturating binding to CRC cells at concentrations of approximately 1 µg/mL. While not directly affecting CRC cell growth and viability, 293C3-SDIE potently induced NK cell activation, degranulation, secretion of Interferon-γ, as well as ADCC resulting in potent lysis of CRC cell lines. Based on the preclinical characterization presented in this study and the available data indicating that CD133 is broadly expressed in CRC and represents a negative prognostic marker, we conclude that 293C3-SDIE constitutes a promising therapeutic agent for the treatment of CRC and thus warrants clinical evaluation.
    Type of Medium: Online Resource
    ISSN: 2072-6694
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527080-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 1454-1454
    Abstract: Chemotherapeutic treatment induces a morphological complete remission (CR) in the majority of leukemia patients, but minimal residual disease (MRD) remains detectable by sensitive methods and constitutes the basis for relapse. Immunotherapeutic strategies are rarely sufficient to eliminate large tumor burden, but can successfully eliminate MRD. This is exemplified by the efficacy of donor lymphocyte infusion (DLI) and allogeneic stem cell transplantation (SCT) in leukemia. Here we report the first clinical experience with a novel Fc-optimized antibody directed to the receptor tyrosine kinase FLT3 expressed on the surface of leukemia cells. This antibody may potently eliminate MRD after conventional therapy and achieve this goal with less toxicity (i.e. GvHD) than DLI and SCT. After in vitro characterization of the antibody, which revealed its markedly increased ability to mediate antibody dependent cytotoxicity (ADCC), in particular of NK cells, against leukemic cells (Hofmann et al, Leukemia 2012), the antibody (4G8SDIEM) was produced in a university owned unit and applied on a compassionate need basis. Upon application in AML patients with active disease, potent NK cell activation and anti-leukemia activity were observed, but effects were rather short lived, most likely due to unfavorable NK:leukemia cell ratios in the bone marrow. Consecutively we applied 4G8SDIEM to AML patients in morphological CR after SCT which displayed increasing MRD levels (mutNPM1) indicative of imminent relapse and for which no other treatment options were available. In 3 of the 4 patients treated so far, a single application of 4G8SDIEM (in 2 cases followed by treatment with one dose of DLI) resulted in rapid elimination of MRD. The non-responsive patient displayed high titers of preexistent anti-Fab antibodies capable of binding 4G8SDIEM, which provides a potential explanation for the lacking response. One patient that had received subsequent DLI died of complications due to GvHD after reaching and maintaining a molecular CR. The other two patients (1 with, 1 without DLI) remained in molecular CR for at present 17 and 12 months after 4G8-SDIEM application without further specific treatment. No stem cell toxicity was observed. Our results imply that 4G8SDIEM is capable to reduce or eliminate MRD after conventional therapy. Based on these observations, a phase I/II trial enrolling AML patients in CR with detectable MRD is in preparation. Disclosures: Hofmann: Synimmune, GmbH, Tuebingen, Germany: Employment. Grosse-Hovest:Synimmune, GmbH, Tuebingen, Germany: Employment. Aulwurm:Synimmune, GmbH, Tuebingen, Germany: Employment. Jung:Synimmune GmbH, Tuebingen, Germany: Equity Ownership, Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 3793-3793
    Abstract: NK cells largely contribute to the success of monoclonal antibody (mAb) application in cancer due to their ability to mediate antibody-dependent cellular cytotoxicity (ADCC), a feature considered critical for therapeutic success. Up to now, no immunotherapeutic antibodies are available for the treatment of myeloid leukemias. Recently, we reported on the development of mAb targeting CD133, which is expressed on a wide variety of tumor cells (Koerner et al., Blood 2014 124:2309). Here we extend our analyses and provide further data on the preclinical characterization of an Fc-engineered CD133 mAb for the treatment of myeloid leukemia. Compared to two other anti-human CD133 mAb (clones AC133 and W6B3), which both bound to primary AML and CML cells in 15/25 and 7/10 cases, respectively, clone 293C3 recognized the leukemic cells in 22/25 AML cases and 7/10 CML cases. Based on these results, clone 293C3 was chosen to generate chimeric mAb with either a wildtype Fc part (293C3-WT) or a variant containing amino acid exchanges (S239D/I332E) to enhance affinity to the activating Fc receptor CD16 on NK cells (293C3-SDIE). Treatment with 293C3-SDIE resulted in significantly enhanced activation, degranulation and lysis of primary CD133-positive AML cells by NK cells in allogeneic and autologous experimental ex vivo settings as compared to its wildtype counterpart. Considering the expression of CD133 on healthy hematopoietic progenitor cells, we further performed colony forming unit assays with healthy bone marrow (BM) cells. In line with the observed lower expression levels of CD133 on healthy compared to malignant hematopoietic cells no relevant toxicity of 293C3-SDIE at the level of committed hematopoietic progenitor cells was observed. Moreover, 293C3-SDIE did not induce lysis of of healthy BM cells by allogeneic or autologous NK cells. In a NOD.Cg-Prkdcscid IL2rgtmWjl/Sz (NSG) xenotransplantation model, induction of ADCC by treatment with 293C3-SDIE resulted in the elimination of patient AML cells by NK cells from a matched human donor. Thus, 293C3-SDIE constitutes an attractive immunotherapeutic compound, in particular for the elimination of minimal residual disease in CD133 bearing leukemia in the context of allogenic SCT. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...