GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Informa UK Limited ; 2006
    In:  Molecular and Cellular Biology Vol. 26, No. 9 ( 2006-05-01), p. 3492-3504
    In: Molecular and Cellular Biology, Informa UK Limited, Vol. 26, No. 9 ( 2006-05-01), p. 3492-3504
    Type of Medium: Online Resource
    ISSN: 1098-5549
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2006
    detail.hit.zdb_id: 1474919-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2013
    In:  Cancer Research Vol. 73, No. 19_Supplement ( 2013-10-01), p. IA4-IA4
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 73, No. 19_Supplement ( 2013-10-01), p. IA4-IA4
    Abstract: The activation of the p53 protein by cellular stress signals is fundamental for tumor suppression but also promotes pathological states, such as provoking the side effects of genotoxic cancer therapies. To better understand the mechanisms of p53 action in different contexts, we have leveraged both mouse genetic and genomic approaches. First, we have used mouse genetics to define transcriptional programs involved in p53 function in different in vivo settings, specifically by generating a panel of p53 transcriptional activation domain mutant knock-in mouse strains. These include strains expressing p53 mutants in the first (p5325,26), second (p5353,54), or both transactivation domains (p5325,26,53,54). We have observed that p5325,26 is severely compromised for transactivation of most classical p53 target genes, but retains the ability to activate a subset of p53 targets, while p5325,26,53,54 lacks transactivation activity completely. Interestingly, although unable to induce apoptosis or cell cycle arrest in response to acute DNA damage signals, p5325,26 retains full activity in suppressing cancers of a wide range of types, indicating that robust transactivation of most canonical p53 targets is dispensable for tumor suppression. Importantly, as p5325,26 activates only a subset of p53-dependent genes, yet retains tumor suppressor activity, it has helped to define a small set of novel p53-inducible tumor suppression-associated genes, which we are currently analyzing in detail. Second, we have utilized genomic approaches to better understand p53 function. Using ChIP-sequencing and RNA-sequencing to analyze transcriptional programs in acute DNA damage-treated mouse embryo fibroblasts, our studies have revealed an extensive p53-regulated autophagy program that contributes to p53 responses. Together, these approaches will help better define the transcriptional networks important for p53 action in different settings. Citation Format: Colleen A. Brady, Daniela Kenzelmann Broz, Dadi Jiang, Stephano Spano Mello, Kathryn Bieging, Thomas M. Johnson, Leslie A. Jarvis, Margaret M. Kozak, Shashwati Basak, Laura D. Attardi. Deconstructing p53 pathways in vivo. [abstract]. In: Proceedings of the Third AACR International Conference on Frontiers in Basic Cancer Research; Sep 18-22, 2013; National Harbor, MD. Philadelphia (PA): AACR; Cancer Res 2013;73(19 Suppl):Abstract nr IA4.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2013
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Informa UK Limited ; 2005
    In:  Cell Cycle Vol. 4, No. 6 ( 2005-06-05), p. 731-734
    In: Cell Cycle, Informa UK Limited, Vol. 4, No. 6 ( 2005-06-05), p. 731-734
    Type of Medium: Online Resource
    ISSN: 1538-4101 , 1551-4005
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2005
    detail.hit.zdb_id: 2102687-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 4 ( 2008-01-29), p. 1215-1220
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 4 ( 2008-01-29), p. 1215-1220
    Abstract: The contribution of transcriptional activation to the p53 effector functions critical for tumor suppression, apoptosis and cellular senescence, remains unclear because of p53's ability to regulate diverse cellular processes in a transactivation-independent manner. Dissociating the importance of transactivation from other p53 functions, including regulating transcriptional repression, DNA replication, homologous recombination, centrosome duplication, and mitochondrial function, has been difficult because of overlapping motifs for these functions in the amino terminus. To determine the relative contribution of these activities and transactivation to p53 function, we generated knockin mice expressing a p53 mutant lacking domains involved in these transactivation-independent functions, while remaining competent for transactivation through fusion to the Herpes Simplex Virus VP16 transactivation domain. This chimeric mutant, termed p53 VP16 , robustly activates the transcription of a range of p53 targets involved in both apoptosis and senescence. Intriguingly, despite being transactivation-competent, this chimeric protein shows selectivity in p53 effector function in mouse fibroblasts, with a capacity to trigger senescence but not apoptosis under a variety of conditions. Our study highlights the central role of p53 transactivation for senescence while suggesting that transactivation is insufficient for apoptosis, and provides insight into the mechanisms by which p53 serves as a tumor suppressor.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Nature, Springer Science and Business Media LLC, Vol. 514, No. 7521 ( 2014-10), p. 228-232
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 41 ( 2011-10-11), p. 17123-17128
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 41 ( 2011-10-11), p. 17123-17128
    Abstract: Over half of all human cancers, of a wide variety of types, sustain mutations in the p53 tumor suppressor gene. Although p53 limits tumorigenesis through the induction of apoptosis or cell cycle arrest, its molecular mechanism of action in tumor suppression has been elusive. The best-characterized p53 activity in vitro is as a transcriptional activator, but the identification of numerous additional p53 biochemical activities in vitro has made it unclear which mechanism accounts for tumor suppression. Here, we assess the importance of transcriptional activation for p53 tumor suppression function in vivo in several tissues, using a knock-in mouse strain expressing a p53 mutant compromised for transcriptional activation, p53 25,26 . p53 25,26 is severely impaired for the transactivation of numerous classical p53 target genes, including p21, Noxa , and Puma , but it retains the ability to activate a small subset of p53 target genes, including Bax . Surprisingly, p53 25,26 can nonetheless suppress tumor growth in cancers derived from the epithelial, mesenchymal, central nervous system, and lymphoid lineages. Therefore, full transactivation of most p53 target genes is dispensable for p53 tumor suppressor function in a range of tissue types. In contrast, a transcriptional activation mutant that is completely defective for transactivation, p53 25,26,53,54 , fails to suppress tumor development. These findings demonstrate that transcriptional activation is indeed broadly critical for p53 tumor suppressor function, although this requirement reflects the limited transcriptional activity observed with p53 25,26 rather than robust transactivation of a full complement of p53 target genes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...