GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wiley  (2)
  • Johnson, Markes E.  (2)
  • 1
    In: Sedimentology, Wiley, Vol. 67, No. 7 ( 2020-12), p. 3595-3618
    Abstract: Sedimentary rocks are rarely preserved on reefless volcanic oceanic islands because their sediments are mostly exported from coastal areas towards the deep sea and such islands typically undergo subsidence. In contrast, the exceptional geological record of the uplifted Santa Maria Island (Azores) provides a unique opportunity to gain insight on such coastal systems. This study focuses on a locality at Ponta do Cedro (eastern Santa Maria Island), which features a series of marine fossiliferous sediments wedged between steep lava deltas. As demonstrated by local structure, these sediments correspond to clinoforms deposited on the steep submarine slope of an active volcanic island, implying transport from shallow waters to greater depths and subsequent colonization by benthic communities. Rapid volcanic progradation eventually sealed the deposits, allowing for their preservation and providing a rare snapshot of the ecology during those intervals, in addition to insights on sedimentary dynamics along submarine island slopes. This study reveals spatial relationships between wedges of sedimentary bodies encapsulated by lavas in the Ponta do Cedro section, and interprets depositional processes preserved in those strata based on sedimentological and palaeontological data. The dynamics of the environment are mostly related to relative sea‐level changes, intense volcanic activity and regional uplift during the Neogene.
    Type of Medium: Online Resource
    ISSN: 0037-0746 , 1365-3091
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2020955-1
    detail.hit.zdb_id: 206889-8
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biological Reviews, Wiley, Vol. 94, No. 3 ( 2019-06), p. 1116-1142
    Abstract: A synthetic model is presented to enlarge the evolutionary framework of the General Dynamic Model (GDM) and the Glacial Sensitive Model (GSM) of oceanic island biogeography from the terrestrial to the marine realm. The proposed ‘Sea‐Level Sensitive’ dynamic model (SLS) of marine island biogeography integrates historical and ecological biogeography with patterns of glacio‐eustasy, merging concepts from areas as diverse as taxonomy, biogeography, marine biology, volcanology, sedimentology, stratigraphy, palaeontology, geochronology and geomorphology. Fundamental to the SLS model is the dynamic variation of the littoral area of volcanic oceanic islands (defined as the area between the intertidal and the 50‐m isobath) in response to sea‐level oscillations driven by glacial–interglacial cycles. The following questions are considered by means of this revision: ( i ) what was the impact of (global) glacio‐eustatic sea‐level oscillations, particularly those of the Pleistocene glacial–interglacial episodes, on the littoral marine fauna and flora of volcanic oceanic islands? ( ii ) What are the main factors that explain the present littoral marine biodiversity on volcanic oceanic islands? ( iii ) How can differences in historical and ecological biogeography be reconciled, from a marine point of view? These questions are addressed by compiling the bathymetry of 11 Atlantic archipelagos/islands to obtain quantitative data regarding changes in the littoral area based on Pleistocene sea‐level oscillations, from 150 thousand years ago (ka) to the present. Within the framework of a model sensitive to changing sea levels, we discuss the principal factors affecting the geographical range of marine species; the relationships between modes of larval development, dispersal strategies and geographical range; the relationships between times of speciation, modes of larval development, ecological zonation and geographical range; the influence of sea‐surface temperatures and latitude on littoral marine species diversity; the effect of eustatic sea‐level changes and their impact on the littoral marine biota; island marine species–area relationships; and finally, the physical effects of island ontogeny and its associated submarine topography and marine substrate on littoral biota. Based on the SLS dynamic model, we offer a number of predictions for tropical, subtropical and temperate volcanic oceanic islands on how rates of immigration, colonization, in‐situ speciation, local disappearance, and extinction interact and affect the marine biodiversity around islands during glacials and interglacials, thus allowing future testing of the theory.
    Type of Medium: Online Resource
    ISSN: 1464-7931 , 1469-185X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 1423558-4
    detail.hit.zdb_id: 1476789-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...