GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (4)
  • Johnson, D. W.  (4)
  • Kugel, H. W.  (4)
Material
Publisher
  • AIP Publishing  (4)
Language
Years
  • 1
    In: Review of Scientific Instruments, AIP Publishing, Vol. 80, No. 12 ( 2009-12-01)
    Type of Medium: Online Resource
    ISSN: 0034-6748 , 1089-7623
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2009
    detail.hit.zdb_id: 209865-9
    detail.hit.zdb_id: 1472905-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Physics of Plasmas, AIP Publishing, Vol. 13, No. 5 ( 2006-05-01)
    Abstract: The National Spherical Torus Experiment (NSTX) has explored the effects of shaping on plasma performance as determined by many diverse topics including the stability of global magnetohydrodynamic (MHD) modes (e.g., ideal external kinks and resistive wall modes), edge localized modes (ELMs), bootstrap current drive, divertor flux expansion, and heat transport. Improved shaping capability has been crucial to achieving βt∼40%. Precise plasma shape control has been achieved on NSTX using real-time equilibrium reconstruction. NSTX has simultaneously achieved elongation κ∼2.8 and triangularity δ∼0.8. Ideal MHD theory predicts increased stability at high values of shaping factor S≡q95Ip∕(aBt), which has been observed at large values of the S∼37[MA∕(m∙T)] on NSTX. The behavior of ELMs is observed to depend on plasma shape. A description of the ELM regimes attained as shape is varied will be presented. Increased shaping is predicted to increase the bootstrap fraction at fixed Ip. The achievement of strong shaping has enabled operation with 1s pulses with Ip=1MA, and for 1.6s for Ip=700kA. Analysis of the noninductive current fraction as well as empirical analysis of the achievable plasma pulse length as elongation is varied will be presented. Data are presented showing a reduction in peak divertor heat load due to increasing in flux expansion.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2006
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Physics of Plasmas, AIP Publishing, Vol. 10, No. 5 ( 2003-05-01), p. 1755-1764
    Abstract: Edge parameters play a critical role in high confinement mode (H-mode) access, which is a key component of discharge optimization in present day toroidal confinement experiments and the design of next generation devices. Because the edge magnetic topology of a spherical torus (ST) differs from a conventional aspect ratio tokamak, H-modes in STs exhibit important differences compared with tokamaks. The dependence of the National Spherical Torus Experiment (NSTX) [C. Neumeyer et al., Fusion Eng. Des. 54, 275 (2001)] edge plasma on heating power, including the low confinement mode (L-mode) to H-mode (L-H) transition requirements and the occurrence of edge-localized modes (ELMs), and on divertor configuration is quantified. Comparisons between good L-modes and H-modes show greater differences in the ion channel than the electron channel. The threshold power for the H-mode transition in NSTX is generally above the predictions of a recent International Tokamak Experimental Reactor (ITER) [ITER Physics Basis Editors, Nucl. Fusion 39, 2175 (1999)] scaling. Correlations of transition and ELM phenomena with turbulent fluctuations revealed by gas puff imaging and reflectometry are observed. In both single-null and double-null divertor discharges, the density peaks off-axis, sometimes developing prominent “ears” which can be sustained for many energy confinement times, τE, in the absence of ELMs. A wide variety of ELM behavior is observed, and ELM characteristics depend on configuration and fueling.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2003
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Physics of Plasmas, AIP Publishing, Vol. 13, No. 9 ( 2006-09-01)
    Abstract: There has been a substantial international research effort in the fusion community to identify tokamak operating regimes with either small or no periodic bursts of particles and power from the edge plasma, known as edge-localized modes (ELMs). While several candidate regimes have been presented in the literature, very little has been published on the characteristics of the small ELMs themselves. One such small ELM regime, also known as the Type V ELM regime, was recently identified in the National Spherical Torus Experiment [M. Ono, S. M. Kaye, Y.-K. M. Peng et al., Nucl. Fusion 40, 557 (2000)]. In this paper, the spatial and temporal structure of the Type V ELMs is presented, as measured by several different diagnostics. The composite picture of the Type V ELM is of an instability with one or two filaments that rotate toroidally at ∼5–10km∕s, in the direction opposite to the plasma current and neutral beam injection. The toroidal extent of Type V ELMs is typically ∼5m, whereas the cross-field (radial) extent is typically ∼10cm (3cm), yielding a portrait of an electromagnetic, ribbon-like perturbation aligned with the total magnetic field. The filaments comprising the Type V ELM appear to be destabilized near the top of the H-mode pedestal and drift radially outward as they rotate toroidally. After the filaments come in contact with the open field lines, the divertor plasma perturbations are qualitatively similar to other ELM types, albeit with only one or two filaments in the Type V ELM versus more filaments for Type I or Type III ELMs. Preliminary stability calculations eliminate pressure driven modes as the underlying instability for Type V ELMs, but more work is required to determine if current driven modes are responsible for destabilization.
    Type of Medium: Online Resource
    ISSN: 1070-664X , 1089-7674
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2006
    detail.hit.zdb_id: 1472746-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...