GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 12, No. 5 ( 2019-05-14), p. 1909-1963
    Abstract: Abstract. We describe Global Atmosphere 7.0 and Global Land 7.0 (GA7.0/GL7.0), the latest science configurations of the Met Office Unified Model (UM) and the Joint UK Land Environment Simulator (JULES) land surface model developed for use across weather and climate timescales. GA7.0 and GL7.0 include incremental developments and targeted improvements that, between them, address four critical errors identified in previous configurations: excessive precipitation biases over India, warm and moist biases in the tropical tropopause layer (TTL), a source of energy non-conservation in the advection scheme and excessive surface radiation biases over the Southern Ocean. They also include two new parametrisations, namely the UK Chemistry and Aerosol (UKCA) GLOMAP-mode (Global Model of Aerosol Processes) aerosol scheme and the JULES multi-layer snow scheme, which improve the fidelity of the simulation and were required for inclusion in the Global Atmosphere/Global Land configurations ahead of the 6th Coupled Model Intercomparison Project (CMIP6). In addition, we describe the GA7.1 branch configuration, which reduces an overly negative anthropogenic aerosol effective radiative forcing (ERF) in GA7.0 whilst maintaining the quality of simulations of the present-day climate. GA7.1/GL7.0 will form the physical atmosphere/land component in the HadGEM3–GC3.1 and UKESM1 climate model submissions to the CMIP6.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2019
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 20 ( 2021-10-26), p. 15901-15927
    Abstract: Abstract. Ammonium nitrate is a major aerosol constituent over many land regions and contributes to air pollution episodes, ecosystem destruction, regional haze, and aerosol-induced climate forcing. Many climate models that represent ammonium nitrate assume that the ammonium–sulfate–nitrate chemistry reaches thermodynamic equilibrium instantaneously without considering kinetic limitations on condensation rates. The Met Office's Unified Model (UM) is employed to investigate the sensitivity of ammonium nitrate concentrations to the nitric acid uptake coefficient (γ) in a newly developed nitrate scheme in which first-order condensation theory is utilised to limit the rate at which thermodynamic equilibrium is attained. Two values of γ representing fast (γ=0.193) and slow (γ=0.001) uptake rates are tested in 20-year global UM integrations. The global burden of nitrate associated with ammonium in the “fast” simulation (0.11 Tg[N]) is twice as great as in the “slow” simulation (0.05 Tg[N]), while the top-of-the-atmosphere radiative impact of representing nitrate is −0.19 W m−2 in the fast simulation and −0.07 W m−2 in the slow simulation. In general, the fast simulation exhibits better spatial correlation with observed nitrate concentrations, while the slow simulation better resolves the magnitude of concentrations. Local near-surface nitrate concentrations are found to be highly correlated with seasonal ammonia emissions, suggesting that ammonia is the predominant limiting factor controlling nitrate prevalence. This study highlights the high sensitivity of ammonium nitrate concentrations to nitric acid uptake rates and provides a novel mechanism for reducing nitrate concentration biases in climate model simulations. The new UM nitrate scheme represents a step change in aerosol modelling capability in the UK across weather and climate timescales.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmosphere, MDPI AG, Vol. 11, No. 10 ( 2020-10-14), p. 1095-
    Abstract: As one of the main drivers for climate change, it is important to understand changes in anthropogenic aerosol emissions and evaluate the climate impact. Anthropogenic aerosols have affected global climate while exerting a much larger influence on regional climate by their short lifetime and heterogeneous spatial distribution. In this study, the effective radiative forcing (ERF), which has been accepted as a useful index for quantifying the effect of climate forcing, was evaluated to understand the effects of aerosol on regional climate over a historical period (1850–2014). Eastern United States (EUS), Western European Union (WEU), and Eastern Central China (ECC), are regions that predominantly emit anthropogenic aerosols and were analyzed using Coupled Model Intercomparison Project 6 (CMIP6) simulations implemented within the framework of the Aerosol Chemistry Model Intercomparison Project (AerChemMIP) in the UK’s Earth System Model (UKESM1). In EUS and WEU, where industrialization occurred relatively earlier, the negative ERF seems to have been recovering in recent decades based on the decreasing trend of aerosol emissions. Conversely, the radiative cooling in ECC seems to be strengthened as aerosol emission continuously increases. These aerosol ERFs have been largely attributed to atmospheric rapid adjustments, driven mainly by aerosol-cloud interactions rather than direct effects of aerosol such as scattering and absorption.
    Type of Medium: Online Resource
    ISSN: 2073-4433
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2605928-9
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Advances in Modeling Earth Systems, American Geophysical Union (AGU), Vol. 11, No. 12 ( 2019-12), p. 4513-4558
    Abstract: UKESM1 represents a major advance over its predecessor HadGEM2‐ES, both in the complexity of its components and its internal coupling The complex coupling presents challenges to the model development; we document the tuning process employed to obtain acceptable performance UKESM1 performs well, having a stable pre‐industrial state and showing good agreement with observations in a wide variety of contexts
    Type of Medium: Online Resource
    ISSN: 1942-2466 , 1942-2466
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2019
    detail.hit.zdb_id: 2462132-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Geoscientific Model Development, Copernicus GmbH, Vol. 13, No. 12 ( 2020-12-21), p. 6383-6423
    Abstract: Abstract. We document and evaluate the aerosol schemes as implemented in the physical and Earth system models, the Global Coupled 3.1 configuration of the Hadley Centre Global Environment Model version 3 (HadGEM3-GC3.1) and the United Kingdom Earth System Model (UKESM1), which are contributing to the sixth Coupled Model Intercomparison Project (CMIP6). The simulation of aerosols in the present-day period of the historical ensemble of these models is evaluated against a range of observations. Updates to the aerosol microphysics scheme are documented as well as differences in the aerosol representation between the physical and Earth system configurations. The additional Earth system interactions included in UKESM1 lead to differences in the emissions of natural aerosol sources such as dimethyl sulfide, mineral dust and organic aerosol and subsequent evolution of these species in the model. UKESM1 also includes a stratospheric–tropospheric chemistry scheme which is fully coupled to the aerosol scheme, while GC3.1 employs a simplified aerosol chemistry mechanism driven by prescribed monthly climatologies of the relevant oxidants. Overall, the simulated speciated aerosol mass concentrations compare reasonably well with observations. Both models capture the negative trend in sulfate aerosol concentrations over Europe and the eastern United States of America (US) although the models tend to underestimate sulfate concentrations in both regions. Interactive emissions of biogenic volatile organic compounds in UKESM1 lead to an improved agreement of organic aerosol over the US. Simulated dust burdens are similar in both models despite a 2-fold difference in dust emissions. Aerosol optical depth is biased low in dust source and outflow regions but performs well in other regions compared to a number of satellite and ground-based retrievals of aerosol optical depth. Simulated aerosol number concentrations are generally within a factor of 2 of the observations, with both models tending to overestimate number concentrations over remote ocean regions, apart from at high latitudes, and underestimate over Northern Hemisphere continents. Finally, a new primary marine organic aerosol source is implemented in UKESM1 for the first time. The impact of this new aerosol source is evaluated. Over the pristine Southern Ocean, it is found to improve the seasonal cycle of organic aerosol mass and cloud droplet number concentrations relative to GC3.1 although underestimations in cloud droplet number concentrations remain. This paper provides a useful characterisation of the aerosol climatology in both models and will facilitate understanding in the numerous aerosol–climate interaction studies that will be conducted as part of CMIP6 and beyond.
    Type of Medium: Online Resource
    ISSN: 1991-9603
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2020
    detail.hit.zdb_id: 2456725-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...