GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature Communications, Springer Science and Business Media LLC, Vol. 5, No. 1 ( 2014-10-20)
    Abstract: The genetic contributions to breast cancer development among Latinas are not well understood. Here we carry out a genome-wide association study of breast cancer in Latinas and identify a genome-wide significant risk variant, located 5′ of the Estrogen Receptor 1 gene ( ESR1 ; 6q25 region). The minor allele for this variant is strongly protective (rs140068132: odds ratio (OR) 0.60, 95% confidence interval (CI) 0.53–0.67, P =9 × 10 −18 ), originates from Indigenous Americans and is uncorrelated with previously reported risk variants at 6q25. The association is stronger for oestrogen receptor-negative disease (OR 0.34, 95% CI 0.21–0.54) than oestrogen receptor-positive disease (OR 0.63, 95% CI 0.49–0.80; P heterogeneity=0.01) and is also associated with mammographic breast density, a strong risk factor for breast cancer ( P =0.001). rs140068132 is located within several transcription factor-binding sites and electrophoretic mobility shift assays with MCF-7 nuclear protein demonstrate differential binding of the G/A alleles at this locus. These results highlight the importance of conducting research in diverse populations.
    Type of Medium: Online Resource
    ISSN: 2041-1723
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 2553671-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Prevention Research, American Association for Cancer Research (AACR), Vol. 5, No. 2 ( 2012-02-01), p. 150-163
    Abstract: There are compelling reasons to conduct studies of cancer in Hispanics, the fastest growing major demographic group in the United States (from 15% to 30% of the U.S. population by 2050). The genetically admixed Hispanic population coupled with secular trends in environmental exposures and lifestyle/behavioral practices that are associated with immigration and acculturation offer opportunities for elucidating the effects of genetics, environment, and lifestyle on cancer risk and identifying novel risk factors. For example, traditional breast cancer risk factors explain less of the breast cancer risk in Hispanics than in non-Hispanic whites (NHW), and there is a substantially greater proportion of never-smokers with lung cancer in Hispanics than in NHW. Hispanics have higher incidence rates for cancers of the cervix, stomach, liver, and gall bladder than NHW. With respect to these cancers, there are intriguing patterns that warrant study (e.g., depending on country of origin, the five-fold difference in gastric cancer rates for Hispanic men but not Hispanic women). Also, despite a substantially higher incidence rate and increasing secular trend for liver cancer in Hispanics, there have been no studies of Hispanics reported to date. We review the literature and discuss study design options and features that should be considered in future studies. Cancer Prev Res; 5(2); 150–63. ©2012 AACR.
    Type of Medium: Online Resource
    ISSN: 1940-6207 , 1940-6215
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2012
    detail.hit.zdb_id: 2422346-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-08-29)
    Abstract: Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC , has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44–1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1 , BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 4379-4379
    Abstract: Multiple myeloma (MM) is a neoplasm thought to arise from a damaged germinal center B-cell that progresses to a plasma cell clone arising in bone marrow. MM comprises 20% of all hematologic cancer deaths. Persons of African ancestry (AA) have a 1.5 to 2-fold higher risk compared to individuals of European ancestry (EA). Genetically driven differences in hematopoiesis may lead to variation in the levels white blood cell (WBC) subsets which could, in turn, be associated with MM etiology. There are differences in genetic determinants of WBC traits between EA and AA populations, with possible implications for the racial disparity in risk. We tested the above hypothesis using Mendelian randomization (MR), an approach that leverages genetic determinants of specific traits (i.e. WBC counts) to estimate their effects on the risk of an outcome; and a transcriptome-wide association study (TWAS), which utilizes genetic predictors of gene expression to identify susceptibility genes. These analytic approaches were applied to data from the African American Multiple Myeloma Study (AAMMS) consisting of 1813 cases and 8871 AA cancer-free controls to examine how differences in heritable WBC gene expression profiles influence MM risk. Genetic determinants of variation in WBC subsets in AA were obtained from the literature and supplemented with new genome-wide association findings in AA subjects from the UK Biobank cohort (n=6108). Odds ratios (OR) for MM per 1 standard deviation (SD) increase in each WBC phenotype were estimated using independent (linkage disequilibrium (LD) r2 〈 0.10) variants with P 〈 10-6 as genetic instruments. Analyses based on variants associated with WBC traits in AA populations did not identify any statistically-significant associations between MM risk and WBC overall (p=0.81, using 15 SNPs) or subsets (lymphocytes, monocytes, eosinophils, neutrophils and basophils, p 〉 0.05 for each). However, when we applied genetic determinants of WBC identified in 330,000 cancer-free EA UK Biobank participants (P 〈 10-8, replication P 〈 0.05, LD r2 〈 0.05), a statistically significant inverse relationship emerged between increasing lymphocyte counts and MM risk (OR=0.80, 95% CI: 0.66-0.97, p=0.02, using 385 SNPs), as well as increasing basophil counts (OR=0.63, 95% CI: 0.41-0.96, p=0.03, using 140 SNPs). Next, we examined the association between WBC gene expression profiles and MM risk in AAMMS data. We applied published and validated ancestry-specific models developed using the PrediXcan approach, which leverage germline genetic and transcriptomic data from the Multi-Ethnic Study of Atherosclerosis (MESA) (Mogil et al. PMID: 30096133). The primary TWAS used gene expression models trained in AA subjects (n=233), with sensitivity analyses using models developed in AA and Hispanic subjects (n=585). The TWAS significance threshold was based on the number of genes with significant germline prediction models (p 〈 0.05 and R2 ≥0.05) in AA, corresponding to P 〈 0.05/2700 = 1.85×10-5. The expression of two genes was significantly associated with MM risk: KANK1at 9p24.3 (P = 1.01×10-5) and DNAJC27at 2p23.3 (P = 1.56×10-5). KANK1is a candidate tumor suppressor gene for renal cell carcinoma and has recently been associated with MM risk in AA [Du, Blood 2017 130:3058]. Here we provide additional evidence for its role in MM etiology via gene expression-mediated mechanisms. DNAJC27 (previously known as RBJ) is a novel MM risk gene linked to constitutive activation of ERK in solid tumors. We also identified two suggestively associated genes: PRR14 (P = 1.34×10-4; combined AA-Hispanic sample: P = 1.56×10-6), which has been linked to MM risk in EA populations, and PARP16 (P = 9.46×10-5). To our knowledge this is the first study to comprehensively examine variation in WBC traits and gene expression profiles with respect to MM risk in AA. Our TWAS analysis leveraged data from the largest collection of genetic and gene expression data in AA, enabling ancestry-matched inference and identification of two novel risk genes. Although the limited availability of genetic instruments for WBC limited the power of MR analysis, findings using variants identified in European populations may offer some insight into trans-ethnic etiologic pathways and contribute to risk stratification strategies using genetic and blood cell count biomarkers. Future studies, particularly with MGUS-free controls, are needed to validate these results. Disclosures Song: Millennium Pharmaceuticals Inc: Employment. Rand:Ancestry.com: Employment. Ailawadhi:Cellectar: Research Funding; Janssen: Consultancy, Research Funding; Celgene: Consultancy; Pharmacyclics: Research Funding; Amgen: Consultancy, Research Funding; Takeda: Consultancy. Nooka:Takeda: Honoraria, Other: advisory board participation; Janssen: Honoraria, Other: advisory board participation; GSK: Honoraria, Other: advisory board participation; Spectrum pharmaceuticals: Honoraria, Other: advisory board participation; Adaptive technologies: Honoraria, Other: advisory board participation; Amgen: Honoraria, Other: advisory board participation; Celgene: Honoraria, Other: advisory board participation; BMS: Honoraria, Other: advisory board participation. Singhal:Bureau of Millennium/Takeda, Celgene, Janssen, Celgene, Bristol-Myers Squibb and Bluebird: Speakers Bureau. van Rhee:Takeda: Consultancy; Sanofi Genzyme: Consultancy; Castleman Disease Collaborative Network: Consultancy; EUSA: Consultancy; Adicet Bio: Consultancy; Kite Pharma: Consultancy; Karyopharm Therapeutics: Consultancy. Mehta:Millennium/Takeda, Celgene; stock in Celgene, Bristol-Myers Squibb and Bluebird: Speakers Bureau. Wolf:Takeda: Consultancy; Celgene: Consultancy; Novartis: Consultancy; Janssen: Consultancy; Amgen: Consultancy. Martin:Roche and Juno: Consultancy; Amgen, Sanofi, Seattle Genetics: Research Funding. Fiala:Incyte: Research Funding. Terebelo:Jannsen: Speakers Bureau; Celgene: Honoraria; Newland Medical Asociates: Employment. Anderson:Bristol-Myers Squibb: Other: Scientific Founder; Oncopep: Other: Scientific Founder; Amgen: Consultancy, Speakers Bureau; Janssen: Consultancy, Speakers Bureau; Takeda: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Sanofi-Aventis: Other: Advisory Board. Vij:Bristol-Myers Squibb: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; Genentech: Honoraria; Janssen: Honoraria; Karyopharm: Honoraria; Sanofi: Honoraria; Takeda: Honoraria, Research Funding. Bernal-Mizrachi:TAKEDA: Research Funding; Kodikas Therapeutic Solutions, Inc: Equity Ownership; Winship Cancer Institute: Employment, Patents & Royalties. Morgan:Amgen, Roche, Abbvie, Takeda, Celgene, Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Other: research grant, Research Funding. Zonder:Celgene Corporation: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Takeda: Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Intellia: Consultancy, Membership on an entity's Board of Directors or advisory committees; Caelum: Consultancy, Membership on an entity's Board of Directors or advisory committees; Alnylam: Consultancy, Membership on an entity's Board of Directors or advisory committees; BMS: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Janssen: Consultancy, Membership on an entity's Board of Directors or advisory committees; Oncopeptides: Consultancy, Membership on an entity's Board of Directors or advisory committees. Huff:Member of Safety Monitoring Board for Johnson and Johnson: Membership on an entity's Board of Directors or advisory committees; Karyopharm, Sanofi, MiDiagnostics: Consultancy. Lonial:Karyopharm: Consultancy; Takeda: Consultancy, Research Funding; Amgen: Consultancy; BMS: Consultancy; Janssen: Consultancy, Research Funding; GSK: Consultancy; Celgene Corporation: Consultancy, Research Funding; Genentech: Consultancy. Orlowski:Poseida Therapeutics, Inc.: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 75, No. 15_Supplement ( 2015-08-01), p. 2759-2759
    Abstract: Hispanic women in the U.S. have lower incidence of breast cancer compared to Non-Hispanic Whites (NHW). A genome-wide association study (GWAS) of breast cancer in Hispanics reported a relatively strong protective variant near the ESR1 gene, only observed among women with Indigenous American ancestry (rs140068132-A/G). The study also reported lower mammographic density among women who were homozygous for the Indigenous American variant (G) and a stronger protective effect for estrogen receptor negative (ER-) breast cancer. In the present study, we assessed if this variant had an effect on age at breast cancer diagnosis among Hispanic BRCA1 carriers, who commonly present with ER- disease. We combined data from four studies of Hispanic BRCA1 mutation carriers with breast cancer: the Clinical Cancer Genetics Community Research Network (CCGCRN; N = 152), Northern California Breast Cancer Family Registry (NC-BCFR, N = 27), and two studies in Latin America, one from Colombia (N = 33) and one from Chile (N = 27). We genotyped the rs140068132 variant using a Taqman assay following the recommended protocol. We used a non-parametric Kruskal-Wallis equality-of-populations rank test to evaluate if the age of breast cancer diagnosis was associated with the rs140068132 polymorphism among BRCA1 carriers. We conducted separate analyses of Hispanic women from California and women from Colombia and Chile. For the California studies, we also had information on ovarian cancer status and were able to conduct stratified analyses. Among 239 BRCA1 carriers, we observed 201 homozygous AA, 36 heterozygous AG, and 2 missing genotypes, with an overall allele frequency of the G allele of 7.6%. We did not find a statistically significant effect of rs140068132 on age at diagnosis among Hispanic BRCA1 carriers overall. However, we found a suggestion of later age at diagnosis, with median age at diagnosis of 39.8 years (33-46 years) in AA homozygous compared to 44 years (34-50 years) in heterozygous (p value = 0.1) women from California. Among women without ovarian cancer either before or after the breast cancer diagnosis, the difference in age at breast cancer diagnosis by genotype was slightly stronger (p value 0.06). We did not observe an association among the patients from Colombia and Chile. Studies of BRCA mutation carriers are often limited by selection for breast cancer cases, thus there may be a bias against enrollment of BRCA carriers with the protective allele in the present analysis. The observed suggestion of a difference in age at diagnosis in the samples from California, similar to genome-wide identified variants that have been shown to have an effect among BRCA1 and BRCA2 carriers, warrants further investigation. Citation Format: Laura Fejerman, Jeffrey N. Weitzel, Esther M. John, Cynthia Villarreal, Gary Unzeitig, Darling Horcasitas, Charite Ricker, Adrian Daneri, Kayla Castaneda, Alexander Miron, Ana Marie Tuazon, Magdalena Echeverry, Pilar Carvallo, Carolina Alvarez, Teresa Tapia, Columbus Consortium, Luis Carvajal-Carmona, Susan Neuhausen, Elad Ziv. Possible later age of breast cancer onset for Hispanic BRCA1 carriers with the protective rs140068132-G allele. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2759. doi:10.1158/1538-7445.AM2015-2759
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2015
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Epidemiology, Biomarkers & Prevention, American Association for Cancer Research (AACR), Vol. 29, No. 6_Supplement_2 ( 2020-06-01), p. PR05-PR05
    Abstract: Background: Persons of African ancestry (AA) experience a 1.5-2-fold risk of multiple myeloma (MM) compared to persons of European ancestry (EA). We assembled a set of MM patients with self-reported AA in order to evaluate the contribution of genetics to etiology in this high-risk group. Methods: Here we present the results of a meta-analysis of two GWAS in 1,813 cases and 8,871 controls of AA. We also conducted an admixture mapping scan to identify risk alleles associated with local ancestry, fine-mapped the 23 known susceptibility loci to find markers that could better capture MM risk in individuals of AA, and constructed a polygenic risk score (PRS) to assess the aggregated effect of known MM risk alleles. Finally, we conducted an eQTL analysis measuring gene expression in those genes harboring a risk variant in malignant plasma cells from 292 of the patients from a single site. Results: In GWAS analysis, we identified two suggestive novel loci located at 9p24.3 and 9p13.1 at P & lt;1 × 10-6, but no genome-wide significant association was noted. In admixture mapping, we observed a genome-wide significant inverse association between local AA at 2p24.1-23.1 and MM risk in AA individuals. 20 of the 23 known EA risk variants showed directional consistency and 9 replicated at P & lt;0.05 in AA individuals. In eight regions, we identified markers that better capture MM risk in persons of AA. AA individuals with a PRS in the top 10% had a 1.82-fold (95%CI: 1.56, 2.11) increased MM risk compared to those with average risk (25-75%). The strongest functional association was between the risk allele for variant rs56219066 at 5q15 and lower ELL2 expression (P= 5.1 × 10–12). Conclusion: Our study shows that common genetic variation contributes to MM risk individuals of AA. This abstract is also being presented as Poster C040. Citation Format: Zhaohui Du, Niels Weinhold, Gregory Chi Song, Kristen A. Rand, David J. Van Den Berg, Amie E. Hwang, Xin Sheng, Victor Hom, Sikander Ailawadhi, Ajay K. Nooka, Seema Singhal, Karen Pawlish, Edward Peters, Cathryn Bock, Ann Mohrbacher, Alexander Stram, Sonja I. Berndt, William J. Blot, Graham Casey, Victoria L. Stevens, Rick Kittles, Phyllis J. Goodman, W. Ryan Diver, Anselm Hennis, Barbara Nemesure, Eric A. Klein, Benjamin A. Rybicki, Janet L. Stanford, John S. Witte, Lisa Signorello, Esther M. John, Leslie Bernstein, Antoinette Stroup, Owen W. Stephens, Maurizio Zangari, Frits Van Rhee, Andrew Olshan, Wei Zheng, Jennifer J. Hu, Regina Ziegler, Sarah J. Nyante, Sue Ann Ingles, Michael Press, John David Carpten, Stephen Chanock, Jayesh Mehta, Graham A Colditz, Jeffrey Wolf, Thomas G. Martin, Michael Tomasson, Mark A. Fiala, Howard Terebelo, Nalini Janakiraman, Laurence Kolonel, Kenneth C. Anderson, Loic Le Marchand, Daniel Auclair, Brian C.-H. Chiu, Elad Ziv, Daniel Stram, Ravi Vij, Leon Bernal-Mizrachi, Gareth J. Morgan, Jeffrey A. Zonder, Carol Ann Huff, Sagar Lonial, Robert Z. Orlowski, David V. Conti, Christopher A. Haiman, Wendy Cozen. A meta-analysis of genome-wide association study and eQTL analysis of multiple myeloma among African Americans [abstract]. In: Proceedings of the Twelfth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2019 Sep 20-23; San Francisco, CA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2020;29(6 Suppl_2):Abstract nr PR05.
    Type of Medium: Online Resource
    ISSN: 1055-9965 , 1538-7755
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036781-8
    detail.hit.zdb_id: 1153420-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 2419-2419
    Abstract: Background: Genome-wide association studies (GWAS) have identified over 180 single nucleotide polymorphisms (SNPs) associated with breast cancer risk. Polygenic risk scores (PRS) represent the combined effects of multiple SNPs and have been consistently shown to improve the performance of existing risk models. Most SNPs were discovered in women of European ancestry. Thus, there are limited data on how PRS perform in Latinas, whose ancestry is a mixture of European and Indigenous American. We therefore sought to validate the performance of a 184-SNP PRS in Latinas. Methods: We conducted a pooled analysis of U.S. Latina and Mexican participants from 6 existing studies. Our analysis included 3,441 women with breast cancer and 7,773 women without breast cancer. We constructed a PRS containing 184 SNPs associated with breast cancer in prior GWAS, p & lt; 5 x 10-8. We used multivariable logistic regression to evaluate the associations between the PRS and breast cancer, adjusting for genetic ancestry and study of origin. To assess discrimination, we calculated the area under the receiver operating characteristic curve (AUROC). To test the performance of the PRS by genetic ancestry, we stratified our analysis by quartiles of Indigenous American genetic ancestry. Results: The PRS was associated with breast cancer, with an odds ratio (OR) per standard deviation increment of 1.51 (95% CI 1.44-1.59). The PRS showed intermediate discrimination for cases vs. controls, with an AUROC of 0.62 (95% CI 0.60-0.63). When we stratified the analysis by genetic ancestry, the PRS performed worse in women with higher Indigenous American/lower European ancestry. Specifically, the discrimination of the PRS was least in the top quartile of Indigenous American ancestry and greatest in the bottom quartile, with AUROC of 0.60 (95% CI 0.57-0.62) vs. 0.65 (95% CI 0.62-0.67), respectively (p = 0.01). The corresponding ORs per standard deviation of the PRS were 1.40 (95% CI 1.29-1.53) for the top quartile and 1.70 (95% CI 1.52-1.89) for the bottom quartile of Indigenous American ancestry (p = 0.006). Conclusions: A 184-SNP PRS predicts breast cancer in Latinas, with the AUROC of 0.62 in our study being comparable to previous estimates in Europeans. However, the performance of the PRS varied according to genetic ancestry. While our results suggest the PRS may be used as-is in Latinas with higher European ancestry, future efforts should focus on refining the PRS in Latinas of higher Indigenous American ancestry through discovery and replication of novel predictive SNPs in this subgroup. Citation Format: Yiwey Shieh, Laura Fejerman, Sarah D. Sawyer, Donglei Hu, Scott Huntsman, Esther M. John, Lawrence H. Kushi, Gabriela Torres-Mejia, Jeffrey N. Weitzel, Christopher A. Haiman, Elad Ziv, Susan L. Neuhausen. A polygenic risk score predicts breast cancer risk in Latinas [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2419.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Human Molecular Genetics, Oxford University Press (OUP), Vol. 21, No. 8 ( 2012-4-15), p. 1907-1917
    Type of Medium: Online Resource
    ISSN: 1460-2083 , 0964-6906
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2012
    detail.hit.zdb_id: 1474816-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Genome Medicine, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2023-01-26)
    Abstract: Low-frequency variants play an important role in breast cancer (BC) susceptibility. Gene-based methods can increase power by combining multiple variants in the same gene and help identify target genes. Methods We evaluated the potential of gene-based aggregation in the Breast Cancer Association Consortium cohorts including 83,471 cases and 59,199 controls. Low-frequency variants were aggregated for individual genes’ coding and regulatory regions. Association results in European ancestry samples were compared to single-marker association results in the same cohort. Gene-based associations were also combined in meta-analysis across individuals with European, Asian, African, and Latin American and Hispanic ancestry. Results In European ancestry samples, 14 genes were significantly associated ( q   〈  0.05) with BC. Of those, two genes, FMNL3 ( P  = 6.11 × 10 −6 ) and AC058822.1 ( P  = 1.47 × 10 −4 ), represent new associations. High FMNL3 expression has previously been linked to poor prognosis in several other cancers. Meta-analysis of samples with diverse ancestry discovered further associations including established candidate genes ESR1 and CBLB . Furthermore, literature review and database query found further support for a biologically plausible link with cancer for genes CBLB, FMNL3, FGFR2 , LSP1 , MAP3K1 , and SRGAP2C . Conclusions Using extended gene-based aggregation tests including coding and regulatory variation, we report identification of plausible target genes for previously identified single-marker associations with BC as well as the discovery of novel genes implicated in BC development. Including multi ancestral cohorts in this study enabled the identification of otherwise missed disease associations as ESR1 ( P  = 1.31 × 10 −5 ), demonstrating the importance of diversifying study cohorts.
    Type of Medium: Online Resource
    ISSN: 1756-994X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2484394-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood Advances, American Society of Hematology, Vol. 4, No. 1 ( 2020-01-14), p. 181-190
    Abstract: Persons of African ancestry (AA) have a twofold higher risk for multiple myeloma (MM) compared with persons of European ancestry (EA). Genome-wide association studies (GWASs) support a genetic contribution to MM etiology in individuals of EA. Little is known about genetic risk factors for MM in individuals of AA. We performed a meta-analysis of 2 GWASs of MM in 1813 cases and 8871 controls and conducted an admixture mapping scan to identify risk alleles. We fine-mapped the 23 known susceptibility loci to find markers that could better capture MM risk in individuals of AA and constructed a polygenic risk score (PRS) to assess the aggregated effect of known MM risk alleles. In GWAS meta-analysis, we identified 2 suggestive novel loci located at 9p24.3 and 9p13.1 at P & lt; 1 × 10−6; however, no genome-wide significant association was noted. In admixture mapping, we observed a genome-wide significant inverse association between local AA at 2p24.1-23.1 and MM risk in AA individuals. Of the 23 known EA risk variants, 20 showed directional consistency, and 9 replicated at P & lt; .05 in AA individuals. In 8 regions, we identified markers that better capture MM risk in persons with AA. AA individuals with a PRS in the top 10% had a 1.82-fold (95% confidence interval, 1.56-2.11) increased MM risk compared with those with average risk (25%-75%). The strongest functional association was between the risk allele for variant rs56219066 at 5q15 and lower ELL2 expression (P = 5.1 × 10−12). Our study shows that common genetic variation contributes to MM risk in individuals with AA.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...