GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Nature, Springer Science and Business Media LLC, Vol. 535, No. 7613 ( 2016-7), p. 533-537
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Meteorological Society ; 2023
    In:  Journal of Climate ( 2023-08-16), p. 1-36
    In: Journal of Climate, American Meteorological Society, ( 2023-08-16), p. 1-36
    Abstract: Tropical Pacific quasi-decadal (TPQD) climate variability is characterized by quasi-decadal sea surface temperature (SST) variations in the central Pacific (CP). This low-frequency climate variability is suggested to influence extreme regional weather and substantially impact global climate patterns and associated socio-economy through teleconnections. Previous studies mostly attributed the TPQD climate variability to basin-scale air-sea coupling processes. However, due to the coarse resolution of the majority of the observations and climate models, the role of sub-basin-scale processes in modulating the TPQD climate variability is still unclear. Using a long-term high-resolution global climate model, we find that energetic small-scale motions with horizontal scales from tens to hundreds of kilometers (loosely referred to as equatorial submesoscale eddies) act as an important damping effect to retard the TPQD variability. During the positive TPQD events, compound increasing precipitation and warming SST in the equatorial Pacific intensifies the upper ocean stratification and weakens the temperature fronts along the Pacific cold tongue. This suppresses submesoscale eddy growth as well as their associated upward vertical heat transport by inhibiting baroclinic instability (BCI) and frontogenesis; Conversely, during the negative TPQD events, the opposite is true. Using a series of coupled global climate models that participated in the Coupled Model Intercomparison Project Phase 6 with different oceanic resolutions, we show that the amplitude of the TPQD variability becomes smaller as the oceanic resolution becomes finer, providing evidence for the impacts of submesoscale eddies on damping the TPQD variability. Our study suggests that explicitly simulating equatorial submesoscale eddies is necessary for gaining a more robust understanding of low-frequency tropical climate variability.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2023
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2020
    In:  Journal of Climate Vol. 33, No. 24 ( 2020-12-15), p. 10419-10436
    In: Journal of Climate, American Meteorological Society, Vol. 33, No. 24 ( 2020-12-15), p. 10419-10436
    Abstract: Change in the extratropical wintertime-mean mixed layer has been widely studied, given its importance to both physical and biogeochemical processes. With a focus on the south of the Kuroshio Extension region where the mixed layer is deepest in March, this study shows that variation of the synoptic-scale extreme mixed layer depth (MLD) is a better precursor than the monthly mean (or nonextreme) MLD for change in the subtropical mode water formation in spring, based on the NCEP Climate Forecast System Reanalysis (1979–2010). It is found that the extreme MLD events are attributable to the accumulation of excessive surface cooling driven by the synoptic storms that characterize cold-air outbreaks. Particularly, the difference between the extreme and nonextreme MLD is primarily related to differences in the cumulative synoptic heat flux anomalies, while a change in the preconditioning upper-ocean stratification contributes almost equally to both cases. Relative contributions of oceanic and atmospheric forcing to the interannual variation of the extreme MLD are quantified using a bulk mixed layer model. Results show comparable contributions: the preconditioning stratification change accounts for ~44% of total variance of the extreme MLD, whereas the convective mixing by surface heat flux and the mechanical stirring by wind stress account for ~35% and ~13%, respectively. In addition, both the reanalysis and observational data reveal that the extreme and nonextreme MLD has been shallowed significantly during 1979–2010, which is accounted for by the strengthened stratification due to the enhanced ocean surface warming by the Kuroshio heat transport.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2020
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  Nature Vol. 619, No. 7971 ( 2023-07-27), p. 774-781
    In: Nature, Springer Science and Business Media LLC, Vol. 619, No. 7971 ( 2023-07-27), p. 774-781
    Abstract: Most El Niño events occur sporadically and peak in a single winter 1–3 , whereas La Niña tends to develop after an El Niño and last for two years or longer 4–7 . Relative to single-year La Niña, consecutive La Niña features meridionally broader easterly winds and hence a slower heat recharge of the equatorial Pacific 6,7 , enabling the cold anomalies to persist, exerting prolonged impacts on global climate, ecosystems and agriculture 8–13 . Future changes to multi-year-long La Niña events remain unknown. Here, using climate models under future greenhouse-gas forcings 14 , we find an increased frequency of consecutive La Niña ranging from 19 ± 11% in a low-emission scenario to 33 ± 13% in a high-emission scenario, supported by an inter-model consensus stronger in higher-emission scenarios. Under greenhouse warming, a mean-state warming maximum in the subtropical northeastern Pacific enhances the regional thermodynamic response to perturbations, generating anomalous easterlies that are further northward than in the twentieth century in response to El Niño warm anomalies. The sensitivity of the northward-broadened anomaly pattern is further increased by a warming maximum in the equatorial eastern Pacific. The slower heat recharge associated with the northward-broadened easterly anomalies facilitates the cold anomalies of the first-year La Niña to persist into a second-year La Niña. Thus, climate extremes as seen during historical consecutive La Niña episodes probably occur more frequently in the twenty-first century.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...