GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Optica Publishing Group  (6)
  • Jiao, Zhi-Qiang  (6)
  • 2020-2024  (6)
Material
Publisher
  • Optica Publishing Group  (6)
Language
Years
  • 2020-2024  (6)
Year
  • 1
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Optics Letters Vol. 46, No. 7 ( 2021-04-01), p. 1584-
    In: Optics Letters, Optica Publishing Group, Vol. 46, No. 7 ( 2021-04-01), p. 1584-
    Abstract: The inevitable noise and decoherence in the quantum circuit hinder its scalable development, so quantum error correction and quantumness protection for multiple controllable qubits system are necessary. The flatband in the dispersion relation, based on its inherent locality and high degenerate energy band structure, shows non-diffractive transport properties in the line spectrum and has the potential possibility to protect quantum resources in special lattices. The pioneer work has proved that the topologically boundary state is robust to protect the quantumness from disorder and perturbation, which inspires that quantumness can be protected anywhere in a periodic structure, including the boundary state and bulk state. Here, we show the topological protection of quantum resources with different state combinations in a sawtooth lattice. Photons can be localized at any degenerate eigenmode, and the localized effect is determined by only one parameter, without additional modulations. We show a high violation of Cauchy–Schwarz inequality up to 35 standard deviations by measuring cross correlation and auto-correlation of correlated photons. We verify that the topological protection is robust to different wavelengths of correlated photons. Our results suggest an alternative way of exploring topological protection in flatband and bulk state, demonstrating the powerful ability of topological photonics to protect quantum resources.
    Type of Medium: Online Resource
    ISSN: 0146-9592 , 1539-4794
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 243290-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Optica Publishing Group ; 2022
    In:  Photonics Research Vol. 10, No. 2 ( 2022-02-01), p. 456-
    In: Photonics Research, Optica Publishing Group, Vol. 10, No. 2 ( 2022-02-01), p. 456-
    Abstract: Squeezed light is a critical resource in quantum sensing and information processing. Due to the inherently weak optical nonlinearity and limited interaction volume, considerable pump power is typically needed to obtain efficient interactions to generate squeezed light in bulk crystals. Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide. For the construction of large-scale quantum systems performing many-photon operations, it is essential to integrate various functional modules on a chip. However, fabrication imperfections and transmission cross talk may add unwanted diffraction and coupling to other photonic elements, reducing the quality of squeezing. Here, by introducing the topological phase, we experimentally demonstrate the topologically protected nonlinear process of four-wave mixing, enabling the generation of squeezed light on a silica chip. We measure the cross-correlations at different evolution distances for various topological sites and verify the nonclassical features with high fidelity. The squeezing parameters are measured to certify the protection of cavity-free, strongly squeezed states. The demonstration of topological protection for squeezed light on a chip brings new opportunities for quantum integrated photonics, opening novel approaches for the design of advanced multi-photon circuits.
    Type of Medium: Online Resource
    ISSN: 2327-9125
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 2724783-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Photonics Research, Optica Publishing Group, Vol. 10, No. 6 ( 2022-06-01), p. 1430-
    Abstract: Dynamic localization, which originates from the phenomena of particle evolution suppression under an externally applied AC electric field, has been simulated by suppressed light evolution in periodically curved photonic arrays. However, experimental studies on their quantitative dynamic transport properties and application for quantum information processing are rare. Here we fabricate one-dimensional and hexagonal two-dimensional arrays both with sinusoidal curvatures. We successfully observe the suppressed single-photon evolution patterns, and for the first time, to the best of our knowledge, measure the variances to study their transport properties. For one-dimensional arrays, the measured variances match both the analytical electric-field calculation and the quantum walk Hamiltonian engineering approach. For hexagonal arrays as anisotropic effective couplings in four directions are mutually dependent, the analytical approach suffers, whereas quantum walk conveniently incorporates all anisotropic coupling coefficients in the Hamiltonian and solves its exponential as a whole, yielding consistent variances with our experimental results. Furthermore, we implement a nearly complete localization to show that it can preserve both the initial injection and the wave packet after some evolution, acting as a memory of a flexible time scale in integrated photonics. We demonstrate a useful quantum simulation of dynamic localization for studying their anisotropic transport properties and a promising application of dynamic localization as a building block for quantum information processing in integrated photonics.
    Type of Medium: Online Resource
    ISSN: 2327-9125
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 2724783-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Optica Publishing Group ; 2023
    In:  Optics Express Vol. 31, No. 11 ( 2023-05-22), p. 17782-
    In: Optics Express, Optica Publishing Group, Vol. 31, No. 11 ( 2023-05-22), p. 17782-
    Abstract: Multipartite entanglements are essential resources for proceeding tasks in quantum information science and technology. However, generating and verifying them present significant challenges, such as the stringent requirements for manipulations and the need for a huge number of building-blocks as the systems scale up. Here, we propose and experimentally demonstrate the heralded multipartite entanglements on a three-dimensional photonic chip. Integrated photonics provide a physically scalable way to achieve an extensive and adjustable architecture. Through sophisticated Hamiltonian engineering, we are able to control the coherent evolution of shared single photon in the multiple spatial modes, dynamically tuning the induced high-order W-states of different orders in a single photonic chip. Using an effective witness, we successfully observe and verify 61-partite quantum entanglements in a 121-site photonic lattice. Our results, together with the single-site-addressable platform, offer new insights into the accessible size of quantum entanglements and may facilitate the developments of large-scale quantum information processing applications.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2023
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Optics Express, Optica Publishing Group, Vol. 30, No. 18 ( 2022-08-29), p. 32887-
    Abstract: Integrated photonic architectures based on optical waveguides are one of the leading candidates for the future realisation of large-scale quantum computation. One of the central challenges in realising this goal is simultaneously minimising loss whilst maximising interferometric visibility within waveguide circuits. One approach is to reduce circuit complexity and depth. A major constraint in most planar waveguide systems is that beamsplitter transformations between distant optical modes require numerous intermediate SWAP operations to couple them into nearest neighbour proximity, each of which introduces loss and scattering. Here, we propose a 3D architecture which can significantly mitigate this problem by geometrically bypassing trivial intermediate operations. We demonstrate the viability of this concept by considering a worst-case 2D scenario, where we interfere the two most distant optical modes in a planar structure. Using femtosecond laser direct-writing technology we experimentally construct a 2D architecture to implement Hong-Ou-Mandel interference between its most distant modes, and a 3D one with corresponding physical dimensions, demonstrating significant improvement in both fidelity and efficiency in the latter case. In addition to improving fidelity and efficiency of individual non-adjacent beamsplitter operations, this approach provides an avenue for reducing the optical depth of circuits comprising complex arrays of beamsplitter operations.
    Type of Medium: Online Resource
    ISSN: 1094-4087
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2022
    detail.hit.zdb_id: 1491859-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Optica Publishing Group ; 2021
    In:  Optica Vol. 8, No. 9 ( 2021-09-20), p. 1129-
    In: Optica, Optica Publishing Group, Vol. 8, No. 9 ( 2021-09-20), p. 1129-
    Abstract: Quantum walks in an elaborately designed graph are a powerful tool for simulating physical and topological phenomena, constructing novel quantum algorithms, and realizing universal quantum computing. Integrated photonics technology has emerged as a versatile platform for implementing a variety of quantum information tasks and as a promising candidate for performing large-scale quantum walks. Both extending physical dimensions and involving more particles will increase the complexity of the evolving systems. Pioneering studies have demonstrated a single particle walking on two-dimensional lattices and multiple walkers interfering on a one-dimensional structure. However, multiple particles evolving in a genuine two-dimensional space in a scalable fashion has remained a vacancy for nearly 10 years. We present a genuine two-dimensional quantum walk with correlated photons on a triangular photonic lattice, which is mapped to a 37 × 37 high-dimensional state space. The genuine two-dimensional quantum walk breaks through the physical restrictions of single-particle evolution, allowing for the encoding of information in large spaces and construction of high-dimensional graphs, which are beneficial for quantum information processing. Between the chip and the two-dimensional fanout interface, site-by-site addressing enables simultaneous detection of over 600 nonclassical interferences and observation of quantum correlations that violate a classical limit by 57 standard deviations. Our implementation provides a paradigm for multi-photon quantum walks in a two-dimensional configuration on a large scale, paving the way for practical quantum simulation and computation beyond the classical regime.
    Type of Medium: Online Resource
    ISSN: 2334-2536
    Language: English
    Publisher: Optica Publishing Group
    Publication Date: 2021
    detail.hit.zdb_id: 2779175-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...