GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Jiang, Wenhao  (3)
Material
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2024
    In:  Journal of Climate Vol. 37, No. 13 ( 2024-07-01), p. 3479-3491
    In: Journal of Climate, American Meteorological Society, Vol. 37, No. 13 ( 2024-07-01), p. 3479-3491
    Abstract: This study investigates the spatiotemporal variations of the summer frequency of daytime–nighttime compound extreme high-temperature events (FCEHEs) in the mid–high latitudes of Asia (MHA) from 1979 to 2014. Results show that FCEHE has shown an upward trend with fluctuations, especially in Mongolia–Baikal. The descending anomaly caused by the anomalous high pressure over Mongolia–Baikal results in reduced cloud cover, which increases solar radiation reaching the ground, favoring the higher FCEHE. This process is consistent during the daytime and nighttime periods, with relatively limited nighttime solar radiation, potentially compensated by the increased downward longwave radiation to sustain the extreme high temperatures. This benefit process is closely connected with two main factors: the increased sea ice in the Barents Sea during spring and the anomalously warm sea surface temperature (SST) in the Northwest Pacific during summer. The increased sea ice can affect the Eurasia (EU) teleconnection, while the warm SST affects the Pacific-Japan/East Asia–Pacific pattern (PJ/EAP). Subsequently, these factors further modulate the circulation anomalies and then FCEHE. Significance Statement This study provides valuable insights into the spatiotemporal variations and the possible underlying mechanisms for change in the frequency of daytime–nighttime compound extreme high-temperature events (FCEHEs) in the mid–high latitudes of Asia. The spring sea ice anomalies over the Barents Sea and summer sea surface temperature anomalies in the Northwest Pacific affect the local anticyclonic circulation in Mongolia–Baikal through Eurasia (EU) and Pacific-Japan/East Asia–Pacific (PJ/EAP) patterns, respectively. The resulting descending anomaly and reduced cloud cover contribute to interannual variations of FCEHE, which is highly similar during the daytime and nighttime periods. During the nighttime, when the solar radiation is relatively limited, the increased downward longwave radiation may compensate to sustain extreme high temperatures.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2024
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Wiley ; 2022
    In:  International Journal of Climatology Vol. 42, No. 16 ( 2022-12-30), p. 8619-8631
    In: International Journal of Climatology, Wiley, Vol. 42, No. 16 ( 2022-12-30), p. 8619-8631
    Abstract: The influence of anthropogenic (ANT) activity and the other external factors on extreme temperature changes over the mid–high latitudes of Asia are analysed using the different forcing simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) models. The optimal fingerprinting technique and the probability ratio (PR) are employed to detect and quantify the influences of the external forcings on extreme temperature changes, which include annual maximum daily maximum temperature (TXx) and annual minimum daily minimum (TNn) temperature. Results indicate that TXx and TNn have increased from 1979 to 2014, and the simulations from historical (anthropogenic plus natural; ALL), greenhouse gas (GHG), and anthropogenic (ANT) experiments reasonably reproduce the spatiotemporal characteristics of extreme temperatures. Based on the optimal fingerprinting method, the impact of ANT forcing, in which GHG forcing is critical, can be detected in the changes of warm extremes and cold extremes. ANT and NAT forcings are separately detectable for warm extremes. GHG forcing can be separated from other ANT forcings for cold extremes but not warm extremes. Furthermore, the analysis applying the PR method shows that the probability of observed warm extremes that occur once in 20 years over the mid–high latitudes of Asia has risen by approximately three times owing to the anthropogenic influence, whereas the cold extremes became once in 50 years. Briefly, the increased anthropogenic activity has exacerbated the warm extremes and soothed the cold extremes over the mid–high latitudes of Asia during the past decades.
    Type of Medium: Online Resource
    ISSN: 0899-8418 , 1097-0088
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 1491204-1
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2024
    In:  National Science Review Vol. 11, No. 7 ( 2024-06-13)
    In: National Science Review, Oxford University Press (OUP), Vol. 11, No. 7 ( 2024-06-13)
    Abstract: More than 1000 years, the Meiyu–Baiu have shaped the uniqueness of natural resources, civilization and culture in the Yangtze River Basin of China and the main islands of Japan. In recent decades, frequent rainstorms and droughts have seemingly diminished the misty features of traditional Meiyu–Baiu rainfall. However, there is still no consensus on whether their traditional nature is suspended. In this study, we quantitatively demonstrate that the Meiyu–Baiu almost completely lost their traditional features during 1961–2023, ∼80% of which can be attributed to anthropogenic warming. Furthermore, in a warmer future, the traditional Meiyu–Baiu will be more unlikely to appear. This study underscores the urgency in adapting to climate shift because destructive extremes are measurably taking the place of mild and maternal rains.
    Type of Medium: Online Resource
    ISSN: 2095-5138 , 2053-714X
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2024
    detail.hit.zdb_id: 2745465-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...