GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Jia, Renyong  (11)
  • Wu, Yuanyuan  (11)
  • 1
    In: Poultry Science, Elsevier BV, Vol. 100, No. 8 ( 2021-08), p. 101251-
    Type of Medium: Online Resource
    ISSN: 0032-5791
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2021
    detail.hit.zdb_id: 2016331-9
    SSG: 22
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Virology, American Society for Microbiology, Vol. 94, No. 20 ( 2020-09-29)
    Abstract: Members of the Pegivirus genus, family Flaviviridae, widely infect humans and other mammals, including nonhuman primates, bats, horses, pigs, and rodents, but are not associated with disease. Here, we report a new, genetically distinct pegivirus in goose ( Anser cygnoides ), the first identified in a nonmammalian host species. Goose pegivirus (GPgV) can be propagated in goslings, embryonated goose eggs, and primary goose embryo fibroblasts, and is thus the first pegivirus that can be efficiently cultured in vitro . Experimental infection of GPgV in goslings via intravenous injection revealed robust replication and high lymphotropism. Analysis of the tissue tropism of GPgV revealed that the spleen and thymus were the organs bearing the highest viral loads. Importantly, GPgV could promote clinical manifestations of goose parvovirus infection, including reduced weight gain and 7% mortality. This finding contrasts with the lack of pathogenicity that is characteristic of previously reported pegiviruses. IMPORTANCE Members of the Pegivirus genus, family Flaviviridae , widely infect humans and other mammals, but are described as causing persistent infection and lacking pathogenicity. The efficiency of in vitro replication systems for pegivirus is poor, thus limiting investigation into viral replication steps. Because of that, the pathogenesis, cellular tropism, route of transmission, biology, and epidemiology of pegiviruses remain largely uncovered. Here, we report a phylogenetically distinct goose pegivirus (GPgV) that should be classified as a new species. GPgV proliferated in cell culture in a species- and cell-type-specific manner. Animal experiments show GPgV lymphotropism and promote goose parvovirus clinical manifestations. This study provides the first cell culture model for pegivirus, opening new possibilities for studies of pegivirus molecular biology. More importantly, our findings stand in contrast to the lack of identified pathogenicity of previously reported pegiviruses, which sheds lights on the pathobiology of pegivirus.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Virology, American Society for Microbiology, Vol. 94, No. 9 ( 2020-04-16)
    Abstract: Duck Tembusu virus (DTMUV), which is similar to other mosquito-borne flaviviruses that replicate well in most mammalian cells, is an emerging pathogenic flavivirus that has caused epidemics in egg-laying and breeding waterfowl. Immune organ defects and neurological dysfunction are the main clinical symptoms of DTMUV infection. Preinfection with DTMUV makes the virus impervious to later interferon (IFN) treatment, revealing that DTMUV has evolved some strategies to defend against host IFN-dependent antiviral responses. Immune inhibition was further confirmed by screening for DTMUV-encoded proteins, which suggested that NS2A significantly inhibited IFN-β and IFN-stimulated response element (ISRE) promoter activity in a dose-dependent manner and facilitated reinfection with duck plague virus (DPV). DTMUV NS2A was able to inhibit duck retinoic acid-inducible gene-I (RIG-I)-, and melanoma differentiation-associated gene 5 (MDA5)-, mitochondrial-localized adaptor molecules (MAVS)-, stimulator of interferon genes (STING)-, and TANK-binding kinase 1 (TBK1)-induced IFN-β transcription, but not duck TBK1- and interferon regulatory factor 7 (IRF7)-mediated effective phases of IFN response. Furthermore, we found that NS2A competed with duTBK1 in binding to duck STING (duSTING), impaired duSTING-duSTING binding, and reduced duTBK1 phosphorylation, leading to the subsequent inhibition of IFN production. Importantly, we first identified that the W164A, Y167A, and S361A mutations in duSTING significantly impaired the NS2A-duSTING interaction, which is important for NS2A-induced IFN-β inhibition. Hence, our data demonstrated that DTMUV NS2A disrupts duSTING-dependent antiviral cellular defenses by binding with duSTING, which provides a novel mechanism by which DTMUV subverts host innate immune responses. The potential interaction sites between NS2A and duSTING may be the targets of future novel antiviral therapies and vaccine development. IMPORTANCE Flavivirus infections are transmitted through mosquitos or ticks and lead to significant morbidity and mortality worldwide with a spectrum of manifestations. Infection with an emerging flavivirus, DTMUV, manifests with clinical symptoms that include lesions of the immune organs and neurological dysfunction, leading to heavy egg drop and causing serious harm to the duck industry in China, Thailand, Malaysia, and other Southeast Asian countries. Mosquito cells, bird cells, and mammalian cell lines are all susceptible to DTMUV infection. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and may pose a threat to mammalian health. However, the pathogenesis of DTMUV is largely unclear. Our results show that NS2A strongly blocks the STING-induced signal transduction cascade by binding with STING, which subsequently blocks STING-STING binding and TBK1 phosphorylation. More importantly, the W164, Y167, or S361 residues in duSTING were identified as important interaction sites between STING and NS2A that are vital for NS2A-induced IFN production and effective phases of IFN response. Uncovering the mechanism by which DTMUV NS2A inhibits IFN in the cells of its natural hosts, ducks, will help us understand the role of NS2A in DTMUV pathogenicity.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 203, No. 12 ( 2019-12-15), p. 3374-3385
    Abstract: Duck Tembusu virus (DTMUV) is a newly emerged causative agent of avian disease. The protease-dependent immune evasion of flaviviruses has been reported; however, the molecular details of this process are unclear. In this study, we found that DTMUV nonstructural protein 2B-3, a NS2B3 protease, can inhibit IFN-β production. DTMUV NS2B3 inhibited RIG-I–, MDA5-, MAVS-, and STING-directed IFN-β transcription, but not TBK1- and IRF7-mediated induction of IFN-β. Further analysis showed that DTMUV NS2B3 could cleave duck STING (duSTING); the cleavage was dependent on the protease activity of NS2B3. Moreover, the STING cleavage event occurred in a not-strictly-species-specific manner. The scissile bond of duSTING cleaved by NS2B3 was mapped between the R84 and G85 residues. The ability of NS2B3 to reduce duSTING cleavage-resistant mutant-mediated IFN-β, and ISG production was significantly reduced, demonstrating that duSTING cleavage is essential for NS2B3-induced suppression of type I IFN responses. Remarkably, the binding of NS2B3 to duSTING, which is a prerequisite for cleavage, was found to depend on NS2B, but not NS3, the cofactor of the enzyme. Unexpectedly, we found that the region between aa residues 221–225 of duSTING, distal from the site of the scissile bond, was essential for the binding of NS2B3 to duSTING and/or the cleavage of duSTING by NS2B3. Thus, we identified the molecular mechanism by which DTMUV subverts the host innate immunity using its protease. More importantly, our study provides insight into NS2B3-mediated STING cleavage events in general.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2019
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-07-24)
    Abstract: Duck Tembusu virus (DTMUV), a mosquito-borne Flavivirus, has caused serious economic losses for the Chinese poultry industry. The genome is translated into a polyprotein that is cleaved to mature protein by host and viral proteases in the host cell, and this proteolytic process is important for the viral life cycle. However, the cleavage mechanism of DTMUV polyprotein is still unclear. In this study, we identified that several amino acids (P1-R, P1′-G, P2-R, P3-T, and P4-V) were vital for NS2A/2B cleavage. Meanwhile, both NS2A and NS2B were essential in cis for polyprotein NS2A/2B intramolecular cleavage. Subsequently, a DTMUV replicon and an infectious clone showed that the P1 site is essential to viral replication, while a mutation in P1′ could boost viral RNA replication. Furthermore, a recombinant virus with P1 and P1′ site mutations named rDTMUV-NS2A/2B-P1P1′(AA) was rescued from transfected BHK21 cells. The maximum viral titers and viral genome copies of rDTMUV-NS2A/2B-P1P1′(AA) were much lower than those of rDTMUV-WT both in the intracellular and extracellular samples of transfected and infected BHK21 cells. Taken together, the NS2A/2B cleavage sites processed by the NS2B3 protease are vital for DTMUV proliferation and virulence.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2021-12-16)
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Virology Journal, Springer Science and Business Media LLC, Vol. 16, No. 1 ( 2019-12)
    Abstract: Goose parvovirus (GPV) is the etiological agent of Derzsy’s disease and is fatal for gosling. Research on the molecular basis of GPV pathogenicity has been hampered by the lack of a reliable reverse genetics system. At present, the GPV infectious clone has been rescued by transfection in the goose embryo, but the growth character of it is unclear in vitro. Methods In this study, we identified the full-length genome of GPV RC16 from the clinical sample, which was cloned into the pACYC177, generating the pIRC16. The recombinant virus (rGPV RC16) was rescued by the transfection of pIRC16 into goose embryo fibroblasts (GEFs). The rescued virus was characterized by whole genome sequencing, indirect immunofluorescence assays (IFA) and western blot (WB) using rabbit anti-GPV Rep polyclonal antibody as the primary antibody. Previously, we found the 164 K, 165 K, and 167 K residues in the 160YPVVKKPKLTEE171 are required for the nuclear import of VP1 (Chen S, Liu P, He Y, et al. Virology 519:17–22). According to that, the GPV infectious clones with mutated K164A, K165A, or K167A in VP1 were constructed, rescued and passaged. Results The rGPV RC16 has been successfully rescued by transfection of pIRC16 into the GEFs and can proliferate in vitro. Furthermore, the progeny virus produced by pIRC16 transfected cells was infectious in GEFs. Moreover, mutagenesis experiments showed that the rGPV RC16 with mutated 164 K, 165 K and 167 K in VP1 could not proliferate in GEFs based on the data of IFA and WB in parental virus and progeny virus. Conclusions The rGPV RC16 containing genetic maker and the progeny virus are infectious in GEFs. The 164 K, 165 K, and 167 K of VP1 are vital for the proliferation of rGPV RC16 in vitro.
    Type of Medium: Online Resource
    ISSN: 1743-422X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2160640-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: BMC Veterinary Research, Springer Science and Business Media LLC, Vol. 15, No. 1 ( 2019-12)
    Type of Medium: Online Resource
    ISSN: 1746-6148
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2191675-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Virology, American Society for Microbiology, Vol. 94, No. 16 ( 2020-07-30)
    Abstract: Duck Tembusu virus (DTMUV) (genus Flavivirus ) is a causative agent of duck egg drop syndrome and has zoonotic potential. The positive-strand RNA genomes of flaviviruses are commonly translated in a cap-dependent manner. However, dengue and Zika viruses also exhibit cap-independent translation. In this study, we show that RNAs containing 5′ and 3′ untranslated regions (UTRs) of DTMUV, mosquito-borne Tembusu virus (TMUV), and Japanese encephalitis virus can be translated in a cap-independent manner in mammalian, avian, and mosquito cells. The ability of the 5′ UTRs of flaviviruses to direct the translation of a second open reading frame in bicistronic RNAs was much less than that observed for internal ribosome entry site (IRES) encephalomyocarditis virus, indicating a lack of substantial IRES activity. Instead, cap-independent translation of DTMUV RNA was dependent on the presence of a 3′ UTR, RNA secondary structures located in both UTRs, and specific RNA sequences. Mutations inhibiting cap-independent translation decreased DTMUV proliferation in vitro and delayed, but did not prevent, the death of infected duck embryos. Thus, the 5′ and 3′ UTRs of DTMUV enable the virus to use a cap- and IRES-independent RNA genome translation strategy that is important for its propagation and virulence. IMPORTANCE The genus Flavivirus includes major human pathogens, as well as animal-infecting viruses with zoonotic potential. In order to counteract the threats these viruses represent, it is important to understand their basic biology to develop universal attenuation strategies. Here, we demonstrate that five different flaviviruses use cap-independent translation, indicating that the phenomenon is probably common to all members of the genus. The mechanism used for flavivirus cap-independent translation was found to be different from that of IRES-mediated translation and dependent on both 5′ and 3′ UTRs that act in cis . As cap-independent translation was also observed in mosquito cells, its role in flavivirus infection is unlikely to be limited to the evasion of consequences of the shutoff of host translation. We found that the inhibition of cap-independent translation results in decreased viral proliferation, indicating that the strategy could be applied to produce attenuated variants of flaviviruses as potential vaccine candidates.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2020
    detail.hit.zdb_id: 1495529-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Virology Journal, Springer Science and Business Media LLC, Vol. 16, No. 1 ( 2019-12)
    Abstract: Duck tembusu virus (DTMUV, genus Flaviviruses, family Flaviviridae) is an emerging flavivirus that can infect a wide range of cells and cell lines in vitro, though the initial step of virus invasion remains obscure. Methods In this study, drug treatments that including heparin, chondroitin sulfate, heparinase I, chondroitinase ABC and trypsin were applied to detect the influence of DTMUV absorption, subsequently, the copy number of viral genome RNA was analyzed by quantitative real-time PCR. The inhibition process of viral absorption or entry by heparin was determined by western blotting, and the cytotoxicity of drug treated cells was detected by cell counting kit-8. Results We found that the desulfation of glycosaminoglycans (GAGs) with sodium chlorate had a significant effect on the adsorption of DTMUV in both BHK21 and DEF cells. Based on this result, we incubated cells with a mixture of DTMUV and GAGs competition inhibitors or pre-treated cells with inhibitors, after incubation with the virus, the NS5 expression of DTMUV and viral titers were detected. The data suggested that heparin can significantly inhibit the absorption of DTMUV in a dose dependent manner but not at the step of viral entry in BHK21 and DEF cells. Meanwhile, heparinase I can significantly inhibit DTMUV attachment step. Conclusions Our results clearly proved that heparin sulfate plays an important role in the first step of DTMUV entry, viral attachment, in both BHK21 and DEF cells, which sheds light on the entry mechanism of DTMUV.
    Type of Medium: Online Resource
    ISSN: 1743-422X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2160640-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...