GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Jia, Lianwen  (2)
  • Yang, Xiangzheng  (2)
Material
Publisher
Person/Organisation
Language
Years
  • 1
    In: Sensors, MDPI AG, Vol. 20, No. 7 ( 2020-03-27), p. 1866-
    Abstract: The rapid and non-destructive detection of mechanical damage to fruit during postharvest supply chains is important for monitoring fruit deterioration in time and optimizing freshness preservation and packaging strategies. As fruit is usually packed during supply chain operations, it is difficult to detect whether it has suffered mechanical damage by visual observation and spectral imaging technologies. In this study, based on the volatile substances (VOCs) in yellow peaches, the electronic nose (e-nose) technology was applied to non-destructively predict the levels of compression damage in yellow peaches, discriminate the damaged fruit and predict the time after the damage. A comparison of the models, established based on the samples at different times after damage, was also carried out. The results show that, at 24 h after damage, the correct answer rate for identifying the damaged fruit was 93.33%, and the residual predictive deviation in predicting the levels of compression damage and the time after the damage, was 2.139 and 2.114, respectively. The results of e-nose and gas chromatography-mass spectrophotometry (GC–MS) showed that the VOCs changed after being compressed—this was the basis of the e-nose detection. Therefore, the e-nose is a promising candidate for the detection of compression damage in yellow peach.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Analytical Methods in Chemistry, Hindawi Limited, Vol. 2019 ( 2019-03-17), p. 1-9
    Abstract: The quality of strawberry powder depends on the freshness of the fruit that produces the powder. Therefore, identifying whether the strawberry powder is made from freshly available, short-term stored, or long-term stored strawberries is important to provide consumers with quality-assured strawberry powder. Nevertheless, such identification is difficult by naked eyes, as the powder colours are very close. In this work, based on the measurement of near-infrared (NIR) spectroscopy and mid-infrared (MIR) spectra of strawberry powered, good classification results of 100.00% correct rates to distinguish whether the strawberry powder was made from freshly available or stored fruit was obtained. Furthermore, partial least squares regression and least squares support vector machines (LS-SVM) models were established based on NIR, MIR, and combination of NIR and MIR data with full variables or optimal variables of strawberry powder to predict the storage days of strawberries that produced the powder. Optimal variables were selected by successive projections algorithm (SPA), uninformation variable elimination, and competitive adaptive reweighted sampling, respectively. The best model was determined as the SPA-LS-SVM model based on MIR spectra, which had the residual prediction deviation (RPD) value of 11.198 and the absolute difference between root-mean-square error of calibration and prediction (AB_RMSE) value of 0.505. The results of this work confirmed the feasibility of using NIR and MIR spectroscopic techniques for rapid identification of strawberry powder made from freshly available and stored strawberry.
    Type of Medium: Online Resource
    ISSN: 2090-8865 , 2090-8873
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2019
    detail.hit.zdb_id: 2654178-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...