GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Brain, Oxford University Press (OUP), Vol. 145, No. 1 ( 2022-03-29), p. 378-387
    Abstract: The biological mechanisms underlying the greater prevalence of autism spectrum disorder in males than females remain poorly understood. One hypothesis posits that this female protective effect arises from genetic load for autism spectrum disorder differentially impacting male and female brains. To test this hypothesis, we investigated the impact of cumulative genetic risk for autism spectrum disorder on functional brain connectivity in a balanced sample of boys and girls with autism spectrum disorder and typically developing boys and girls (127 youth, ages 8–17). Brain connectivity analyses focused on the salience network, a core intrinsic functional connectivity network which has previously been implicated in autism spectrum disorder. The effects of polygenic risk on salience network functional connectivity were significantly modulated by participant sex, with genetic load for autism spectrum disorder influencing functional connectivity in boys with and without autism spectrum disorder but not girls. These findings support the hypothesis that autism spectrum disorder risk genes interact with sex differential processes, thereby contributing to the male bias in autism prevalence and proposing an underlying neurobiological mechanism for the female protective effect.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Brain, Oxford University Press (OUP), Vol. 144, No. 6 ( 2021-07-28), p. 1911-1926
    Abstract: Females versus males are less frequently diagnosed with autism spectrum disorder (ASD), and while understanding sex differences is critical to delineating the systems biology of the condition, female ASD is understudied. We integrated functional MRI and genetic data in a sex-balanced sample of ASD and typically developing youth (8–17 years old) to characterize female-specific pathways of ASD risk. Our primary objectives were to: (i) characterize female ASD (n = 45) brain response to human motion, relative to matched typically developing female youth (n = 45); and (ii) evaluate whether genetic data could provide further insight into the potential relevance of these brain functional differences. For our first objective we found that ASD females showed markedly reduced response versus typically developing females, particularly in sensorimotor, striatal, and frontal regions. This difference between ASD and typically developing females does not resemble differences between ASD (n = 47) and typically developing males (n = 47), even though neural response did not significantly differ between female and male ASD. For our second objective, we found that ASD females (n = 61), versus males (n = 66), showed larger median size of rare copy number variants containing gene(s) expressed in early life (10 postconceptual weeks to 2 years) in regions implicated by the typically developing female & gt; female functional MRI contrast. Post hoc analyses suggested this difference was primarily driven by copy number variants containing gene(s) expressed in striatum. This striatal finding was reproducible among n = 2075 probands (291 female) from an independent cohort. Together, our findings suggest that striatal impacts may contribute to pathways of risk in female ASD and advocate caution in drawing conclusions regarding female ASD based on male-predominant cohorts.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Translational Psychiatry, Springer Science and Business Media LLC, Vol. 10, No. 1 ( 2020-06-02)
    Abstract: Autism is hypothesized to be in part driven by a reduced sensitivity to the inherently rewarding nature of social stimuli. Previous neuroimaging studies have indicated that autistic males do indeed display reduced neural activity to social rewards, but it is unknown whether this finding extends to autistic females, particularly as behavioral evidence suggests that affected females may not exhibit the same reduction in social motivation as their male peers. We therefore used functional magnetic resonance imaging to examine social reward processing during an instrumental implicit learning task in 154 children and adolescents (ages 8–17): 39 autistic girls, 43 autistic boys, 33 typically developing girls, and 39 typically developing boys. We found that autistic girls displayed increased activity to socially rewarding stimuli, including greater activity in the nucleus accumbens relative to autistic boys, as well as greater activity in lateral frontal cortices and the anterior insula compared with typically developing girls. These results demonstrate for the first time that autistic girls do not exhibit the same reduction in activity within social reward systems as autistic boys. Instead, autistic girls display increased neural activation to such stimuli in areas related to reward processing and salience detection. Our findings indicate that a reduced sensitivity to social rewards, as assessed with a rewarded instrumental implicit learning task, does not generalize to affected female youth and highlight the importance of studying potential sex differences in autism to improve our understanding of the condition and its heterogeneity.
    Type of Medium: Online Resource
    ISSN: 2158-3188
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2609311-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...