GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Diversity and Distributions, Wiley, Vol. 23, No. 9 ( 2017-09), p. 969-981
    Abstract: Woodlands make up a third of European territory and carry out important ecosystem functions, yet a comprehensive overview of their invasion by alien plants has never been undertaken across this continent. Location Europe. Methods We extracted data from 251,740 vegetation plots stored in the recently compiled European Vegetation Archive. After filtering (resulting in 83,396 plots; 39 regions; 1970–2015 time period), we analysed the species pool and frequency of alien vascular plants with respect to geographic origin and life‐forms, and the levels of invasion across the European Nature Information System ( EUNIS ) woodland habitats. Results We found a total of 386 alien plant species (comprising 7% of all recorded vascular plants). Aliens originating from outside of and from within Europe were almost equally represented in the species pool (192 vs. 181 species) but relative frequency was skewed towards the former group (77% vs. 22%) due, to some extent, to the frequent occurrence of Impatiens parviflora (21% frequency among alien plants). Phanerophytes were the most species‐rich life‐form (148 species) and had the highest representation in terms of relative frequency (39%) among aliens in the dataset. Apart from Europe (181 species), North America was the most important source of alien plants (109 species). At the local scale, temperate and boreal softwood riparian woodland (5%) and mire and mountain coniferous woodland ( 〈 1%) had the highest and lowest mean relative alien species richness (percentage of alien species per plot), respectively. Main conclusions Our results indicate that European woodlands are prone to alien plant invasions especially when exposed to disturbance, fragmentation, alien propagule pressure and high soil nutrient levels. Given the persistence of these factors in the landscape, competitive alien plant species with a broad niche, including alien trees and shrubs, are likely to persist and spread further into European woodlands.
    Type of Medium: Online Resource
    ISSN: 1366-9516 , 1472-4642
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2020139-4
    detail.hit.zdb_id: 1443181-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Global Ecology and Biogeography, Wiley, Vol. 30, No. 9 ( 2021-09), p. 1740-1764
    Abstract: Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co‐occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called ‘sPlot’, compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open‐access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local‐to‐regional datasets to openly release data. We thus present sPlotOpen, the largest open‐access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots ( n  = 95,104) recording cover or abundance of naturally co‐occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets ( c . 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot‐level data also include community‐weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01–40,000 m². Time period and grain 1888–2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot‐level records. Software format Three main matrices (.csv), relationally linked.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Applied Vegetation Science, Wiley, Vol. 25, No. 1 ( 2022-01)
    Abstract: Classification of European bog vegetation ( Oxycocco‐Sphagnetea class); identification of diagnostic species for the class and vegetation subgroups (orders and alliances); development of an expert system for automatic classification of vegetation plots; and production of distribution maps of the Oxycocco‐Sphagnetea class and its alliances. Location Europe. Methods A data set of vegetation‐plot records was compiled to include various bog types over most of the European continent. An unsupervised classification (beta‐flexible linkage method, Sørensen distance measure) and detrended correspondence analysis (DCA) ordination were applied. Formal definitions of syntaxa based on species presence and covers, and respecting the results of the unsupervised classification, were developed and included in a classification expert system. Results The Oxycocco‐Sphagnetea class, its two orders ( Sphagno ‐ Ericetalia tetralicis and Sphagnetalia medii ) and seven compositionally distinct alliances were formally defined. In addition to the syntaxa included in EuroVegChecklist, three new alliances were distinguished: Rubo chamaemori ‐ Dicranion elongati (subarctic polygon and palsa mires); Erico mackaianae ‐ Sphagnion papillosi (blanket bogs of the northwestern Iberian Peninsula); and Sphagno baltici ‐ Trichophorion cespitosi (boreal bog lawns). The latter alliance is newly described in this article. Conclusions This first pan‐European formalized classification of European bog vegetation partially followed the system presented in EuroVegChecklist, but suggested three additional alliances. One covers palsa and polygon mires, one covers Iberian bogs with endemics and one fills the syntaxonomical gap for lawn microhabitats in boreal bogs. A classification expert system has been developed, which allows assignment of vegetation plots to the types described.
    Type of Medium: Online Resource
    ISSN: 1402-2001 , 1654-109X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2022
    detail.hit.zdb_id: 2053083-3
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    University of Hamburg, Biodiversitat, Evolution and Okologie der Pflanzen ; 2012
    In:  Biodiversity & Ecology Vol. 4 ( 2012-09-10), p. 9-13
    In: Biodiversity & Ecology, University of Hamburg, Biodiversitat, Evolution and Okologie der Pflanzen, Vol. 4 ( 2012-09-10), p. 9-13
    Type of Medium: Online Resource
    ISSN: 1613-9801
    URL: Issue
    Language: Unknown
    Publisher: University of Hamburg, Biodiversitat, Evolution and Okologie der Pflanzen
    Publication Date: 2012
    detail.hit.zdb_id: 2688504-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Applied Vegetation Science, Wiley, Vol. 19, No. 1 ( 2016-01), p. 173-180
    Abstract: The European Vegetation Archive ( EVA ) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and regional vegetation‐ plot databases on a single software platform. Data storage in EVA does not affect on‐going independent development of the contributing databases, which remain the property of the data contributors. EVA uses a prototype of the database management software TURBOVEG 3 developed for joint management of multiple databases that use different species lists. This is facilitated by the SynBioSys Taxon Database, a system of taxon names and concepts used in the individual European databases and their corresponding names on a unified list of European flora. TURBOVEG 3 also includes procedures for handling data requests, selections and provisions according to the approved EVA Data Property and Governance Rules. By 30 June 2015, 61 databases from all European regions have joined EVA , contributing in total 1 027 376 vegetation plots, 82% of them with geographic coordinates, from 57 countries. EVA provides a unique data source for large‐scale analyses of European vegetation diversity both for fundamental research and nature conservation applications. Updated information on EVA is available online at http://euroveg.org/eva-database .
    Type of Medium: Online Resource
    ISSN: 1402-2001 , 1654-109X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2053083-3
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Applied Vegetation Science, Wiley, Vol. 23, No. 4 ( 2020-10), p. 648-675
    Abstract: The EUNIS Habitat Classification is a widely used reference framework for European habitat types (habitats), but it lacks formal definitions of individual habitats that would enable their unequivocal identification. Our goal was to develop a tool for assigning vegetation‐plot records to the habitats of the EUNIS system, use it to classify a European vegetation‐plot database, and compile statistically‐derived characteristic species combinations and distribution maps for these habitats. Location Europe. Methods We developed the classification expert system EUNIS‐ESy, which contains definitions of individual EUNIS habitats based on their species composition and geographic location. Each habitat was formally defined as a formula in a computer language combining algebraic and set‐theoretic concepts with formal logical operators. We applied this expert system to classify 1,261,373 vegetation plots from the European Vegetation Archive (EVA) and other databases. Then we determined diagnostic, constant and dominant species for each habitat by calculating species‐to‐habitat fidelity and constancy (occurrence frequency) in the classified data set. Finally, we mapped the plot locations for each habitat. Results Formal definitions were developed for 199 habitats at Level 3 of the EUNIS hierarchy, including 25 coastal, 18 wetland, 55 grassland, 43 shrubland, 46 forest and 12 man‐made habitats. The expert system classified 1,125,121 vegetation plots to these habitat groups and 73,188 to other habitats, while 63,064 plots remained unclassified or were classified to more than one habitat. Data on each habitat were summarized in factsheets containing habitat description, distribution map, corresponding syntaxa and characteristic species combination. Conclusions EUNIS habitats were characterized for the first time in terms of their species composition and distribution, based on a classification of a European database of vegetation plots using the newly developed electronic expert system EUNIS‐ESy. The data provided and the expert system have considerable potential for future use in European nature conservation planning, monitoring and assessment.
    Type of Medium: Online Resource
    ISSN: 1402-2001 , 1654-109X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2020
    detail.hit.zdb_id: 2053083-3
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Applied Vegetation Science, Wiley, Vol. 20, No. 1 ( 2017-01), p. 124-142
    Abstract: Phytosociological classification of fen vegetation ( Scheuchzerio palustris‐Caricetea fuscae class) differs among European countries. Here we propose a unified vegetation classification of European fens at the alliance level, provide unequivocal assignment rules for individual vegetation plots, identify diagnostic species of fen alliances, and map their distribution. Location Europe, western Siberia and SE Greenland. Methods 29 049 vegetation‐plot records of fens were selected from databases using a list of specialist fen species. Formal definitions of alliances were created using the presence, absence and abundance of Cocktail‐based species groups and indicator species. DCA visualized the similarities among the alliances in an ordination space. The ISOPAM classification algorithm was applied to regional subsets with homogeneous plot size to check whether the classification based on formal definitions matches the results of unsupervised classifications. Results The following alliances were defined: Caricion viridulo‐trinervis (sub‐halophytic Atlantic dune‐slack fens), Caricion davallianae (temperate calcareous fens), Caricion atrofusco‐saxatilis (arcto‐alpine calcareous fens), Stygio‐Caricion limosae (boreal topogenic brown‐moss fens), Sphagno warnstorfii‐Tomentypnion nitentis ( Sphagnum‐ brown‐moss rich fens), Saxifrago‐Tomentypnion (continental to boreo‐continental nitrogen‐limited brown‐moss rich fens), Narthecion scardici (alpine fens with Balkan endemics), Caricion stantis (arctic brown‐moss rich fens), Anagallido tenellae‐Juncion bulbosi (Ibero‐Atlantic moderately rich fens), Drepanocladion exannulati (arcto‐boreal‐alpine non‐calcareous fens), Caricion fuscae (temperate moderately rich fens), Sphagno‐Caricion canescentis (poor fens) and Scheuchzerion palustris (dystrophic hollows). The main variation in the species composition of European fens reflected site chemistry (pH, mineral richness) and sorted the plots from calcareous and extremely rich fens, through rich and moderately rich fens, to poor fens and dystrophic hollows. ISOPAM classified regional subsets according to this gradient, supporting the ecological meaningfulness of this classification concept on both the regional and continental scale. Geographic/macroclimatic variation was reflected in the second most important gradient. Conclusions The pan‐European classification of fen vegetation was proposed and supported by the data for the first time. Formal definitions developed here allow consistent and unequivocal assignment of individual vegetation plots to fen alliances at the continental scale.
    Type of Medium: Online Resource
    ISSN: 1402-2001 , 1654-109X
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2053083-3
    SSG: 12
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2011
    In:  Biological Invasions Vol. 13, No. 12 ( 2011-12), p. 2691-2701
    In: Biological Invasions, Springer Science and Business Media LLC, Vol. 13, No. 12 ( 2011-12), p. 2691-2701
    Type of Medium: Online Resource
    ISSN: 1387-3547 , 1573-1464
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    detail.hit.zdb_id: 2014991-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Journal of Biogeography, Wiley, Vol. 46, No. 9 ( 2019-09), p. 1919-1935
    Abstract: The former continental‐scale studies modelled coarse‐grained plant species‐richness patterns (gamma diversity). Here we aim to refine this information for European forests by (a) modelling the number of vascular plant species that co‐occur in local communities (alpha diversity) within spatial units of 400 m 2 ; and (b) assessing the factors likely determining the observed spatial patterns in alpha diversity. Location Europe roughly within 12°W–30°E and 35–60°N. Taxon Vascular plants. Methods The numbers of co‐occurring vascular plant species were counted in 73,134 georeferenced vegetation plots. Each plot was classified by an expert system into deciduous broadleaf, coniferous or sclerophyllous forest. Random Forest models were used to map and explain spatial patterns in alpha diversity for each forest type separately using 19 environmental, land‐use and historical variables. Results Our models explained from 51.0% to 70.9% of the variation in forest alpha diversity. The modelled alpha‐diversity pattern was dominated by a marked gradient from species‐poor north‐western to species‐rich south‐eastern Europe. The most prominent richness hotspots were identified in the Calcareous Alps and adjacent north‐western Dinarides, the Carpathian foothills in Romania and the Western Carpathians in Slovakia. Energy‐related factors, bedrock types and terrain ruggedness were identified as the main variables underlying the observed richness patterns. Alpha diversity increases especially with temperature seasonality in deciduous broadleaf forests, on limestone bedrock in coniferous forests and in areas with low annual actual evapotranspiration in sclerophyllous forests. Main conclusions We provide the first predictive maps and analyses of environmental factors driving the alpha diversity of vascular plants across European forests. Such information is important for the general understanding of European biodiversity. This study also demonstrates a high potential of vegetation‐plot databases as sources for robust estimation of the number of vascular plant species that co‐occur at fine spatial grains across large areas.
    Type of Medium: Online Resource
    ISSN: 0305-0270 , 1365-2699
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2020428-0
    detail.hit.zdb_id: 188963-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Global Ecology and Biogeography, Wiley, Vol. 30, No. 7 ( 2021-07), p. 1514-1531
    Abstract: The number of naturalized (i.e. established) alien species has increased rapidly over recent centuries. Given the differences in environmental tolerances among species, little is known about what factors determine the extent to which the observed size of the naturalized range of a species and hence the extent to which the observed richness of naturalized species of a region approach their full potential. Here, we asked which region‐ and species‐specific characteristics explain differences between observed and expected naturalizations. Location Global. Time period Present. Major taxa studied Vascular plants. Methods We determined the observed naturalized distribution outside Europe for 1,485 species endemic to Europe using the Global Naturalized Alien Flora (GloNAF) database and their expected distributions outside Europe using species distribution models. First, we investigated which of seven socio‐economic factors related to introduction pathways, anthropogenic pressures and inventory effort best explained the differences between observed and expected naturalized European floras. Second, we examined whether distributional features, economic use and functional traits explain the extent to which species have filled their expected ranges outside Europe. Results In terms of suitable area, more than 95% of expected naturalizations of European plants were not yet observed. Species were naturalized in only 4.2% of their suitable regions outside of Europe (range filling) and in 0.4% of their unsuitable regions (range expansion). Anthropogenic habitat disturbance primarily explained the difference between observed and expected naturalized European floras, as did the number of treaties relevant to invasive species. Species of ornamental and economic value and with large specific leaf area performed better at filling and expanding beyond their expected range. Main conclusions The naturalization of alien plant species is explained by climate matching but also by the regional level of human development, the introduction pressure associated with the ornamental and economic values of the species and their adaptation to disturbed environments.
    Type of Medium: Online Resource
    ISSN: 1466-822X , 1466-8238
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1479787-2
    detail.hit.zdb_id: 2021283-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...