GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Stroke, Ovid Technologies (Wolters Kluwer Health), Vol. 51, No. 12 ( 2020-12), p. 3600-3607
    Abstract: We aimed to determine whether lobar cerebellar microbleeds or concomitant lobar cerebellar and deep microbleeds, in the presence of lobar cerebral microbleeds, attribute to underlying advanced cerebral amyloid angiopathy pathology or hypertensive arteriopathy. Methods: We categorized 71 patients with suspected cerebral amyloid angiopathy markers (regardless of the presence of deep and cerebellar microbleeds) into 4 groups according to microbleed distribution: L (strictly lobar cerebral, n=33), L/LCbll (strictly lobar cerebral and strictly lobar cerebellar microbleeds, n=13), L/Cbll/D (lobar, cerebellar, and deep microbleeds, n=17), and L/D (lobar and deep, n=8). We additionally categorized patients with cerebellar microbleeds into 2 groups according to dentate nucleus involvement: strictly lobar cerebellar (n=16) and dentate (n=14). We then compared clinical characteristics, Aβ (amyloid-β) positivity on PET (positron emission tomography), magnetic resonance imaging cerebral amyloid angiopathy markers, and cerebral small vessel disease burden among groups. Results: The frequency of Aβ positivity was higher in the L and L/LCbll groups (81.8% and 84.6%) than in the L/Cbll/D and L/D groups (37.5% and 29.4%; P 〈 0.001), while lacune numbers were lower in the L and L/LCbll groups (1.7±3.3 and 1.7±2.6) than in the L/Cbll/D and L/D groups (8.0±10.3 and 13.4±17.7, P =0.001). The L/LCbll group had more lobar cerebral microbleeds than the L group (93.2±121.8 versus 38.0±40.8, P =0.047). The lobar cerebellar group had a higher Aβ positivity (75% versus 28.6%, P =0.011) and lower lacune number (2.3±3.7 versus 8.6±1.2, P =0.041) than the dentate group. Conclusions: Strictly lobar cerebral and cerebellar microbleeds are related to cerebral amyloid angiopathy, whereas any combination of concurrent lobar and deep microbleeds suggest hypertensive angiopathy regardless of cerebral or cerebellar compartments.
    Type of Medium: Online Resource
    ISSN: 0039-2499 , 1524-4628
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 1467823-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Neurology, Ovid Technologies (Wolters Kluwer Health), Vol. 102, No. 1 ( 2024-01-9)
    Abstract: We aimed to investigate the association between glycemic variability (GV) and neuroimaging markers of white matter hyperintensities (WMH), beta-amyloid (Aβ), brain atrophy, and cognitive impairment. Methods This was a retrospective cohort study that included participants without dementia from a memory clinic. They all had Aβ PET, brain MRI, and standardized neuropsychological tests and had fasting glucose (FG) levels tested more than twice during the study period. We defined GV as the intraindividual visit-to-visit variability in FG levels. Multivariable linear regression and logistic regression were used to identify whether GV was associated with the presence of severe WMH and Aβ uptake with DM, mean FG levels, age, sex, hypertension, and presence of APOE4 allele as covariates. Mediation analyses were used to investigate the mediating effect of WMH and Aβ uptake on the relationship between GV and brain atrophy and cognition. Results Among the 688 participants, the mean age was 72.2 years, and the proportion of female participants was 51.9%. Increase in GV was predictive of the presence of severe WMH (coefficient [95% CI] 1.032 [1.012–1.054] ; p = 0.002) and increased Aβ uptake (1.005 [1.001–1.008]; p = 0.007). Both WMH and increased Aβ uptake partially mediated the relationship between GV and frontal-executive dysfunction (GV → WMH → frontal-executive; direct effect, −0.319 [−0.557 to −0.080]; indirect effect, −0.050 [−0.091 to −0.008] ) and memory dysfunction (GV → Aβ → memory; direct effect, −0.182 [−0.338 to −0.026]; indirect effect, −0.067 [−0.119 to −0.015] ), respectively. In addition, increased Aβ uptake completely mediated the relationship between GV and hippocampal volume (indirect effect, −1.091 [−2.078 to −0.103]) and partially mediated the relationship between GV and parietal thickness (direct effect, −0.00101 [−0.00185 to −0.00016] ; indirect effect, −0.00016 [−0.00032 to −0.000002]). Discussion Our findings suggest that increased GV is related to vascular and Alzheimer risk factors and neurodegenerative markers, which in turn leads to subsequent cognitive impairment. Furthermore, GV can be considered a potentially modifiable risk factor for dementia prevention.
    Type of Medium: Online Resource
    ISSN: 0028-3878 , 1526-632X
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2024
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...