GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 184, No. 7 ( 2010-04-01), p. 3377-3385
    Kurzfassung: Recently, traces of double-positive FoxP3+RORγt+ T cells were identified and viewed as dual programming differentiation intermediates geared toward development into T regulatory or Th17 cells. In this study, we report that FoxP3+RORγt+ intermediates arise in the NOD mouse T cell repertoire prior to inflammation and can be expanded with tolerogen without further differentiation. Furthermore, FoxP3+RORγt+ cells express both CD62L and membrane-bound TGFβ and use the former to traffic to the pancreas and the latter to suppress effector T cells both in vitro and in vivo. The cells perform these functions as FoxP3+RORγt+ intermediates, despite being able to terminally differentiate into either FoxP3+RORγt− T regulatory or FoxP3−RORγt+ Th17 cells on polarization. These previously unrecognized observations extend plasticity to both differentiation and function and indicate that the intermediates are poised to traffic to sites of inflammation and target diverse pathogenic T cells, likely without prior conditioning by effector T cells, thus broadening efficacy against autoimmunity.
    Materialart: Online-Ressource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: The American Association of Immunologists
    Publikationsdatum: 2010
    ZDB Id: 1475085-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 180, No. 3 ( 2008-02-01), p. 1508-1516
    Kurzfassung: A number of Ag-specific approaches have been developed that ameliorate experimental allergic encephalomyelitis (EAE), an animal model for the human autoimmune disease multiple sclerosis. Translation to humans, however, remains a consideration, justifying the search for more insight into the mechanism underlying restoration of self-tolerance. Ig-proteolipid protein (PLP) 1 and Ig-myelin oligodendrocyte glycoprotein (MOG) are Ig chimeras carrying the encephalitogenic PLP 139–151 and MOG 35–55 amino acid sequence, respectively. Ig-PLP1 ameliorates EAE in SJL/J (H-2s) mice while Ig-MOG modulates the disease in C57BL/6 (H-2b) animals. In this study, we asked whether the chimeras would suppress EAE in F1 mice expressing both parental MHC alleles and representing a polymorphism with more relevance to human circumstances. The results show that Ig-MOG modulates both PLP1 and MOG peptide-induced EAE in the F1 mice, whereas Ig-PLP1 counters PLP1 EAE but exacerbates MOG-induced disease. This in trans aggravation of MOG EAE by Ig-PLP1 operates through induction of PLP1-specific T cells producing IL-5 that sustained inhibition of MOG-specific Abs leading to exacerbation of EAE. Thus, in trans T cell tolerance, which should be operative in polymorphic systems, can aggravate rather than ameliorate autoimmunity. This phenomenon possibly takes place through interference with protective humoral immunity.
    Materialart: Online-Ressource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: The American Association of Immunologists
    Publikationsdatum: 2008
    ZDB Id: 1475085-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 181, No. 1 ( 2008-07-01), p. 73-80
    Kurzfassung: Lately, it has become clear that regulatory T cells (Tregs) play a major role in the maintenance of peripheral tolerance and control of autoimmunity. Despite these critical functions, the process underlying the development of Tregs remains largely undefined. Herein, altered peptide ligand (APL) variants derived from the proteolipid protein-1 (PLP1) epitope were expressed on immunoglobulins (Igs) and the resulting Ig-APLs were used to deliver the APLs from mother to fetus through the maternal placenta to influence thymic T cell selection. This delivery system was then adapted to the SJL/J mouse, a strain that expresses only the DM20 form of PLP, which lacks the dominant PLP1 epitope in the thymus during fetal and neonatal development. This model, which restores thymic T cell selection for PLP1, was then used to determine whether affinity plays a role in the development of Tregs. The findings show that fetal exposure to low-affinity peptide ligand was unable to drive development of Tregs while variants with higher affinity to the TCR resulted in significant seeding of the periphery with mature, naive Tregs. Thus, contrary to pathogenic T cells, Tregs require avid TCR-ligand interaction to undergo thymic development and maturation.
    Materialart: Online-Ressource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: The American Association of Immunologists
    Publikationsdatum: 2008
    ZDB Id: 1475085-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Diabetes, American Diabetes Association, Vol. 61, No. 8 ( 2012-08-01), p. 2054-2065
    Kurzfassung: Type 1 diabetes involves both T helper (Th)1 and Th17 cells. While the mechanisms underlying the control of Th1 cells are relatively well defined, those operating modulation of Th17 cells remain unknown. Moreover, given that Th17 cells are plastic and can drive disease as stable or convertible T cells, effective approaches to counter type 1 diabetes would have to alter Th17 function under both circumstances. Herein, we genetically incorporated the BDC2.5-reactive p79 mimotope into an Ig molecule, and the resulting Ig-p79 was used to investigate Th17 tolerance. Accordingly, diabetogenic BDC2.5 Th17 cells were transferred into NOD mice under convertible or stable conditions and their fate was evaluated upon induction of tolerance and disease suppression by Ig-p79. The findings show that convertible (Th17 to Th1) cells display downregulation of the chemokine (C-X-C motif) receptor 3 that was associated with diminished T-box transcription factor T-bet expression, retention in the spleen, and inhibition of trafficking to the pancreas. In contrast, stable Th17 cells downregulated orphan nuclear receptor ROR-γt but increased Fas ligand expression and died by apoptosis. Thus, the final signature transcription factor shapes the mechanism of tolerance in plastic Th17 cells. These findings suggest that effective strategies against type 1 diabetes will require regimens that could drive both mechanisms of tolerance to overcome the disease.
    Materialart: Online-Ressource
    ISSN: 0012-1797 , 1939-327X
    Sprache: Englisch
    Verlag: American Diabetes Association
    Publikationsdatum: 2012
    ZDB Id: 1501252-9
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...