GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Frontiers Media SA  (2)
  • Ivchenko, Nickolay  (2)
  • 1
    In: Frontiers in Astronomy and Space Sciences, Frontiers Media SA, Vol. 9 ( 2023-1-12)
    Abstract: Daedalus MASE (Mission Assessment through Simulation Exercise) is an open-source package of scientific analysis tools aimed at research in the Lower Thermosphere-Ionosphere (LTI). It was created with the purpose to assess the performance and demonstrate closure of the mission objectives of Daedalus, a mission concept targeting to perform in-situ measurements in the LTI. However, through its successful usage as a mission-simulator toolset, Daedalus MASE has evolved to encompass numerous capabilities related to LTI science and modeling. Inputs are geophysical observables in the LTI, which can be obtained either through in-situ measurements from spacecraft and rockets, or through Global Circulation Models (GCM). These include ion, neutral and electron densities, ion and neutral composition, ion, electron and neutral temperatures, ion drifts, neutral winds, electric field, and magnetic field. In the examples presented, these geophysical observables are obtained through NCAR’s Thermosphere-Ionosphere-Electrodynamics General Circulation Model. Capabilities of Daedalus MASE include: 1) Calculations of products that are derived from the above geophysical observables, such as Joule heating, energy transfer rates between species, electrical currents, electrical conductivity, ion-neutral collision frequencies between all combinations of species, as well as height-integrations of derived products. 2) Calculation and cross-comparison of collision frequencies and estimates of the effect of using different models of collision frequencies into derived products. 3) Calculation of the uncertainties of derived products based on the uncertainties of the geophysical observables, due to instrument errors or to uncertainties in measurement techniques. 4) Routines for the along-orbit interpolation within gridded datasets of GCMs. 5) Routines for the calculation of the global coverage of an in situ mission in regions of interest and for various conditions of solar and geomagnetic activity. 6) Calculations of the statistical significance of obtaining the primary and derived products throughout an in situ mission’s lifetime. 7) Routines for the visualization of 3D datasets of GCMs and of measurements along orbit. Daedalus MASE code is accompanied by a set of Jupyter Notebooks, incorporating all required theory, references, codes and plotting in a user-friendly environment. Daedalus MASE is developed and maintained at the Department for Electrical and Computer Engineering of the Democritus University of Thrace, with key contributions from several partner institutions.
    Type of Medium: Online Resource
    ISSN: 2296-987X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2778829-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Frontiers in Astronomy and Space Sciences, Frontiers Media SA, Vol. 9 ( 2023-1-30)
    Abstract: The lower thermosphere-ionosphere (LTI) is a key transition region between Earth’s atmosphere and space. Interactions between ions and neutrals maximize within the LTI and in particular at altitudes from 100 to 200 km, which is the least visited region of the near-Earth environment. The lack of in situ co-temporal and co-spatial measurements of all relevant parameters and their elusiveness to most remote-sensing methods means that the complex interactions between its neutral and charged constituents remain poorly characterized to this date. This lack of measurements, together with the ambiguity in the quantification of key processes in the 100–200 km altitude range affect current modeling efforts to expand atmospheric models upward to include the LTI and limit current space weather prediction capabilities. We present focused questions in the LTI that are related to the complex interactions between its neutral and charged constituents. These questions concern core physical processes that govern the energetics, dynamics, and chemistry of the LTI and need to be addressed as fundamental and long-standing questions in this critically unexplored boundary region. We also outline the range of in situ measurements that are needed to unambiguously quantify key LTI processes within this region, and present elements of an in situ concept based on past proposed mission concepts.
    Type of Medium: Online Resource
    ISSN: 2296-987X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2023
    detail.hit.zdb_id: 2778829-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...