GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (8)
  • Imholt, Christian  (8)
  • 1
    In: Viruses, MDPI AG, Vol. 13, No. 6 ( 2021-06-11), p. 1132-
    Abstract: Tula orthohantavirus (TULV) is a rodent-borne hantavirus with broad geographical distribution in Europe. Its major reservoir is the common vole (Microtus arvalis), but TULV has also been detected in closely related vole species. Given the large distributional range and high amplitude population dynamics of common voles, this host–pathogen complex presents an ideal system to study the complex mechanisms of pathogen transmission in a wild rodent reservoir. We investigated the dynamics of TULV prevalence and the subsequent potential effects on the molecular evolution of TULV in common voles of the Central evolutionary lineage. Rodents were trapped for three years in four regions of Germany and samples were analyzed for the presence of TULV-reactive antibodies and TULV RNA with subsequent sequence determination. The results show that individual (sex) and population-level factors (abundance) of hosts were significant predictors of local TULV dynamics. At the large geographic scale, different phylogenetic TULV clades and an overall isolation-by-distance pattern in virus sequences were detected, while at the small scale ( 〈 4 km) this depended on the study area. In combination with an overall delayed density dependence, our results highlight that frequent, localized bottleneck events for the common vole and TULV do occur and can be offset by local recolonization dynamics.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Biology, MDPI AG, Vol. 10, No. 9 ( 2021-09-18), p. 933-
    Abstract: Leptospirosis is a worldwide zoonotic disease with more than 1 million human cases annually. Infections are associated with direct contact to infected animals or indirect contact to contaminated water or soil. As not much is known about the prevalence and host specificity of Leptospira spp. in bank voles (Clethrionomys glareolus), our study aimed to evaluate Leptospira spp. prevalence and genomospecies distribution as well as the influence of season, host abundance and individual characteristics on the Leptospira prevalence. Bank voles, which are abundant and widely distributed in forest habitats, were collected in the years 2018 to 2020 in North-West Germany, covering parts of North Rhine-Westphalia and Lower Saxony. The DNA of 1817 kidney samples was analyzed by real-time PCR targeting the lipl32 gene. Positive samples were further analyzed by targeting the secY gene to determine Leptospira genomospecies and multilocus sequence typing (MLST) to determine the sequence type (ST). The overall prevalence was 7.5% (95% confidence interval: 6.4–8.9). Leptospira interrogans (83.3%), L. kirschneri (11.5%) and L. borgpetersenii (5.2%) were detected in bank voles. Increasing body weight as a proxy for age increased the individual infection probability. Only in years with high bank vole abundance was this probability significantly higher in males than in females. Even if case numbers of human leptospirosis in Germany are low, our study shows that pathogenic Leptospira spp. are present and thus a persisting potential source for human infection.
    Type of Medium: Online Resource
    ISSN: 2079-7737
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2661517-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Pathogens, MDPI AG, Vol. 11, No. 10 ( 2022-09-28), p. 1112-
    Abstract: Rodentia is the most speciose mammalian order, found across the globe, with some species occurring in close proximity to humans. Furthermore, rodents are known hosts for a variety of zoonotic pathogens. Among other animal species, rodents came into focus when the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spread through human populations across the globe, initially as laboratory animals to study the viral pathogenesis and to test countermeasures. Under experimental conditions, some rodent species including several cricetid species are susceptible to SARS-CoV-2 infection and a few of them can transmit the virus to conspecifics. To investigate whether SARS-CoV-2 is also spreading in wild rodent populations in Germany, we serologically tested samples of free-ranging bank voles (Myodes glareolus, n = 694), common voles (Microtus arvalis, n = 2), house mice (Mus musculus, n = 27), brown or Norway rats (Rattus norvegicus, n = 97) and Apodemus species (n = 8) for antibodies against the virus. The samples were collected from 2020 to 2022 in seven German federal states. All but one sample tested negative by a multispecies ELISA based on the receptor-binding domain (RBD) of SARS-CoV-2. The remaining sample, from a common vole collected in 2021, was within the inconclusive range of the RBD-ELISA, but this result could not be confirmed by a surrogate virus neutralization test as the sample gave a negative result in this test. These results indicate that SARS-CoV-2 has not become highly prevalent in wild rodent populations in Germany.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Pathogens, MDPI AG, Vol. 12, No. 7 ( 2023-07-12), p. 933-
    Abstract: Rickettsiae of the spotted fever group (SFG) are zoonotic tick-borne pathogens. Small mammals are important hosts for the immature life stages of two of the most common tick species in Europe, Ixodes ricinus and Dermacentor reticulatus. These hosts and vectors can be found in diverse habitats with different vegetation types like grasslands and forests. To investigate the influence of environmental and individual factors on Rickettsia prevalence, this study aimed to analyse the prevalence of SFG rickettsiae in ticks and small mammals in different small-scale habitats in central Germany for the first time. Small mammals of ten species and ticks of two species were collected from grasslands and forests in the Hainich-Dün region, central Germany. After species identification, DNA samples from 1098 ticks and ear snips of 1167 small mammals were screened for Rickettsia DNA by qPCR targeting the gltA gene. Positive samples were retested by conventional PCR targeting the ompB gene and sequencing. Rickettsia DNA was detected in eight out of ten small mammal species. Small mammal hosts from forests (14.0%) were significantly more often infected than those from grasslands (4.4%) (p 〈 0.001). The highest prevalence was found in the mostly forest-inhabiting genus Apodemus (14.8%) and the lowest in Microtus (6.6%), which inhabits grasslands. The prevalence was higher in D. reticulatus (46.3%) than in the I. ricinus complex (8.6%). Adult ticks were more often infected than nymphs (p = 0.0199). All sequenced rickettsiae in I. ricinus complex ticks were R. helvetica, and the ones in D. reticulatus were R. raoultii. Unlike adults, questing nymphs have had only one blood meal, which explains the higher prevalence in I. ricinus adults. Interestingly, habitat type did influence infection probability in small mammals, but did not in ticks. A possible explanation may be the high prevalence in Apodemus flavicollis and A. sylvaticus which were more abundant in the forest.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Pathogens, MDPI AG, Vol. 9, No. 7 ( 2020-07-08), p. 548-
    Abstract: The S segment of bank vole (Clethrionomys glareolus)-associated Puumala orthohantavirus (PUUV) contains two overlapping open reading frames coding for the nucleocapsid (N) and a non-structural (NSs) protein. To identify the influence of bank vole population dynamics on PUUV S segment sequence evolution and test for spillover infections in sympatric rodent species, during 2010–2014, 883 bank voles, 357 yellow-necked mice (Apodemus flavicollis), 62 wood mice (A. sylvaticus), 149 common voles (Microtus arvalis) and 8 field voles (M. agrestis) were collected in Baden-Wuerttemberg and North Rhine-Westphalia, Germany. In total, 27.9% and 22.3% of bank voles were positive for PUUV-reactive antibodies and PUUV-specific RNA, respectively. One of eight field voles was PUUV RNA-positive, indicating a spillover infection, but none of the other species showed evidence of PUUV infection. Phylogenetic and isolation-by-distance analyses demonstrated a spatial clustering of PUUV S segment sequences. In the hantavirus outbreak years 2010 and 2012, PUUV RNA prevalence was higher in our study regions compared to non-outbreak years 2011, 2013 and 2014. NSs amino acid and nucleotide sequence types showed temporal and/or local variation, whereas the N protein was highly conserved in the NSs overlapping region and, to a lower rate, in the N alone coding part.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Viruses, MDPI AG, Vol. 13, No. 7 ( 2021-06-28), p. 1258-
    Abstract: The development of new diagnostic methods resulted in the discovery of novel hepaciviruses in wild populations of the bank vole (Myodes glareolus, syn. Clethrionomys glareolus). The naturally infected voles demonstrate signs of hepatitis similar to those induced by hepatitis C virus (HCV) in humans. The aim of the present research was to investigate the geographical distribution of bank vole-associated hepaciviruses (BvHVs) and their genetic diversity in Europe. Real-time reverse transcription polymerase chain reaction (RT-qPCR) screening revealed BvHV RNA in 442 out of 1838 (24.0%) bank voles from nine European countries and in one of seven northern red-backed voles (Myodes rutilus, syn. Clethrionomys rutilus). BvHV RNA was not found in any other small mammal species (n = 23) tested here. Phylogenetic and isolation-by-distance analyses confirmed the occurrence of both BvHV species (Hepacivirus F and Hepacivirus J) and their sympatric occurrence at several trapping sites in two countries. The broad geographical distribution of BvHVs across Europe was associated with their presence in bank voles of different evolutionary lineages. The extensive geographical distribution and high levels of genetic diversity of BvHVs, as well as the high population fluctuations of bank voles and occasional commensalism in some parts of Europe warrant future studies on the zoonotic potential of BvHVs.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Viruses, MDPI AG, Vol. 12, No. 2 ( 2020-02-20), p. 237-
    Abstract: Cowpox virus (CPXV) belongs to the genus Orthopoxvirus in the Poxviridae family and is endemic in western Eurasia. Based on seroprevalence studies in different voles from continental Europe and UK, voles are suspected to be the major reservoir host. Recently, a CPXV was isolated from a bank vole (Myodes glareolus) in Germany that showed a high genetic similarity to another isolate originating from a Cotton-top tamarin (Saguinus oedipus). Here we characterize this first bank vole-derived CPXV isolate in comparison to the related tamarin-derived isolate. Both isolates grouped genetically within the provisionally called CPXV-like 3 clade. Previous phylogenetic analysis indicated that CPXV is polyphyletic and CPXV-like 3 clade represents probably a different species if categorized by the rules used for other orthopoxviruses. Experimental infection studies with bank voles, common voles (Microtus arvalis) and Wistar rats showed very clear differences. The bank vole isolate was avirulent in both common voles and Wistar rats with seroconversion seen only in the rats. In contrast, inoculated bank voles exhibited viral shedding and seroconversion for both tested CPXV isolates. In addition, bank voles infected with the tamarin-derived isolate experienced a marked weight loss. Our findings allow for the conclusion that CPXV isolates might differ in their replication capacity in different vole species and rats depending on their original host. Moreover, the results indicate host-specific differences concerning CPXV-specific virulence. Further experiments are needed to identify individual virulence and host factors involved in the susceptibility and outcome of CPXV-infections in the different reservoir hosts.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Animals, MDPI AG, Vol. 13, No. 3 ( 2023-02-01), p. 515-
    Abstract: Cryptosporidium spp. and Giardia spp. are important diarrhea-causing protozoan parasites worldwide that exhibit broad host ranges. Wild small mammals can harbor host-adapted and potentially zoonotic species of both parasites. The aim of this study was to investigate Cryptosporidium spp. and Giardia spp. in wild rodents and shrews in Portugal, focusing on the protist’s occurrence and genetic diversity. Molecular screening by PCR at the small subunit (SSU) rRNA gene locus of 290 fecal samples from wood mice (Apodemus sylvaticus), southwestern water voles (Arvicola sapidus), Cabrera’s voles (Microtus cabrerae), Lusitanian pine voles (Microtus lusitanicus), Algerian mice (Mus spretus) and greater white-toothed shrews (Crocidura russula) in Northeast Portugal revealed the low occurrence of Cryptosporidium spp. (1%) and high occurrence of Giardia spp. (32.8%). The analysis revealed that “species” was the only significant factor associated with the increasing probability of Giardia spp. infection, with the highest prevalence reported in southwestern water voles and Lusitanian pine voles. Cryptosporidium and Giardia species determination at the SSU rRNA gene locus revealed C. muris and G. microti as the only circulating species, respectively. Subtyping of the glutamate dehydrogenase (gdh) and beta-giardin (bg) genes provided evidence of the high genetic diversity within the G. microti clade. This study suggests that rodent-adapted G. microti occurs to a large extent in cricetid hosts and supports the limited role of wild rodents and shrews as natural sources of human infections in Northeast Portugal regarding the investigated parasites. Moreover, this is the first record of G. microti in southwestern water voles, Lusitanian pine voles, Algerian mice, wood mice and Cabrera’s voles and C. muris in Cabrera’s voles. Finally, this study improves the database of sequences relevant for the sequence typing of G. microti strains and provides new insights about the epidemiology of Giardia spp. and Cryptosporidium spp. in wild rodents and shrews, two parasite genera of high importance for public and animal health.
    Type of Medium: Online Resource
    ISSN: 2076-2615
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2606558-7
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...