GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physiological Society  (1)
  • Imatani, Akira  (1)
Material
Publisher
  • American Physiological Society  (1)
Language
Years
  • 1
    Online Resource
    Online Resource
    American Physiological Society ; 2009
    In:  American Journal of Physiology-Gastrointestinal and Liver Physiology Vol. 297, No. 2 ( 2009-08), p. G312-G322
    In: American Journal of Physiology-Gastrointestinal and Liver Physiology, American Physiological Society, Vol. 297, No. 2 ( 2009-08), p. G312-G322
    Abstract: Helicobacter pylori is a major cause of the transdifferentiation into intestinal metaplasia that may develop gastric cancer. However, the molecular pathogenesis of this transdifferentiation is poorly understood. A SRY-related HMG box protein Sox2 is an essential transcription factor of organ development in brain, lung, and stomach. Our aim of this study was to investigate the mechanism responsible for regulation of Sox2 in host Th1-dominant response to H. pylori. Sox2 protein was immunohistochemically expressed in both human oxyntic and pyloric glands with H. pylori infection, but not in intestinal metaplasia. Western immunoblotting of gastric epithelial cell lines showed that IL-4, a Th2-related cytokine, dose dependently enhanced Sox2 expression among H. pylori infection-mediated cytokines. Small changes of Sox2 expression were observed after each treatment with IFN-γ, IL-1β, or TNF-α. IL-4-mediated Sox2 induction was suppressed by the inhibition of STAT6 activation with STAT6 RNA interference, and electrophoretic mobility shift assay indicated that activation of the Sox2 promoter by IL-4 occurred through the action of STAT6. Furthermore, H. pylori and IFN-γ inhibited the phosphorylation of STAT6, resulting in the suppression of IL-4-mediated Sox2 expression. Immunohistochemical analyses showed significantly the suppressed STAT6 activity in H. pylori-infected human gastric mucosa. Additionally, downregulation of Sox2 by knockdown experiments led to intestinal phenotype with expressions of Cdx2 and MUC2. These results suggest that H. pylori and IFN-γ interfere with the differentiation into oxyntic and pyloric glands by the downregulation of Sox2 on IL-4/STAT6 signaling, which may contribute to the transdifferentiation into intestinal metaplasia.
    Type of Medium: Online Resource
    ISSN: 0193-1857 , 1522-1547
    Language: English
    Publisher: American Physiological Society
    Publication Date: 2009
    detail.hit.zdb_id: 1477329-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...