GLORIA

GEOMAR Library Ocean Research Information Access

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ikeda, Hiroaki  (77)
Material
Language
  • 1
    In: Journal of Clinical Medicine, MDPI AG, Vol. 10, No. 18 ( 2021-09-17), p. 4221-
    Abstract: Background: Single-agent amrubicin chemotherapy is a key regimen, especially for small cell lung cancer (SCLC); however, it can cause severe myelosuppression. Purpose: The purpose of this study was to determine the real-world incidence of febrile neutropenia (FN) among patients treated with single-agent amrubicin chemotherapy for thoracic malignancies. Patients and methods: The medical records of consecutive patients with thoracic malignancies, including SCLC and non-small cell lung cancer (NSCLC), who were treated with single-agent amrubicin chemotherapy in cycle 1 between January 2010 and March 2020, were retrospectively analyzed. Results: One hundred and fifty-six patients from four institutions were enrolled. Their characteristics were as follows: median age (range): 68 (32–86); male/female: 126/30; performance status (0/1/2): 9/108/39; SCLC/NSCLC/others: 111/30/15; and prior treatment (0/1/2/3-): 1/96/31/28. One hundred and thirty-four (86%) and 97 (62%) patients experienced grade 3/4 and grade 4 neutropenia, respectively. One hundred and twelve patients (72%) required therapeutic G-CSF treatment, and 47 (30%) developed FN. Prophylactic PEG-G-CSF was not used in cycle 1 in any case. The median overall survival of the patients with FN was significantly shorter than that of the patients without FN (7.2 vs. 10.0 months, p = 0.025). Conclusions: The real-world incidence rate of FN among patients with thoracic malignancies that were treated with single-agent amrubicin chemotherapy was 30%. It is suggested that prophylactic G-CSF should be administered during the practical use of single-agent amrubicin chemotherapy for patients who have already received chemotherapy.
    Type of Medium: Online Resource
    ISSN: 2077-0383
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2662592-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Immunology, Immunotherapy, Springer Science and Business Media LLC, Vol. 71, No. 11 ( 2022-11), p. 2743-2755
    Type of Medium: Online Resource
    ISSN: 0340-7004 , 1432-0851
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1458489-X
    detail.hit.zdb_id: 195342-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 97-97
    Abstract: Wilms' Tumor 1 (WT1) is expressed in a majority of MDS and AML cells and mRNA of WT1 in peripheral blood and bone marrow is monitored as a marker of minimal residual disease of AML and MDS. Several WT1 protein-derived epitopes that are recognized by cytotoxic T lymphocytes (CTLs) along with HLA molecules are determined. In vitro study and WT1 peptide vaccine trials have demonstrated that WT1-specfic CD8+ T cells with cytotoxic activity can be induced. Adoptive T cell therapy using ex vivo expanded WT1-specific CTLs or WT1-specific T-cell receptor (TCR)-gene transduced cells are potentially effective to refractory MDS and AML. Antigen-specific TCR-gene transfer may cause serious autoimmune disease by mispairing of introduced and endogenous TCR chains that recognize auto-antigens. We established a retroviral vector system encoding siRNAs for endogenous TCR genes to eliminate TCR-mispairing. Using the siRNA-encoding viral vector, we have conducted a first-in-man trial of WT1-specfic TCR-gene transduced T cell transfer. In the trial, we evaluate the safety of the TCR T cell transfer in patients with MDS and AML, and assess in vivo kinetics of the transferred cells. The study was designed as cell-dose escalation with three cohorts of 2x108, 1x109, and 5x109cells per infusion. Peripheral blood mononuclear cells were collected from each patient. Then, the cells were cultured with IL-2, anti-CD3 antibody, and RetroNectin®. Proliferating lymphocytes were infected with a retroviral vector, MS3-WT1-siTCR, which was constructed from DNA encoding WT1235-243/HLA*A24:02 specific TCR-α and -β chains and siRNAs for endogenous TCR genes. After 13-14 days in culture, the lymphocytes were harvested and frozen until infusion. Patients were enrolled to the clinical trial if they were refractory AML or MDS ineligible for allogeneic stem cell transplant, positive for HLA-A*24:02, had performance status of 0 to 2, and had normal organ function. WT1-TCR T cells were infused intravenously twice on days 0 and 28. Modified WT1235-243peptide (300μg) emulsified with Montanide, was given subcutaneously on day 2 and 16 after the second infusion. To date, 5 patients (4 MDS and 1 AML cases) with a median age of 69 years, received WT1-TCR T cells. Three received 2x108 cells (cohort 1) and 2 received 1x109 cells (cohort 2) per infusion, respectively. We did not see any severe adverse events related to the cell infusion or peptide vaccination. No renal or mesothelial damages were observed. We then assessed transduced TCR-gene copy numbers in peripheral blood samples collected at multiple pre-determined time points until day 58.TCR-gene marked cells were detected in all patients after the cell infusion. They appeared immediately after the infusion, reaching peak levels between 1 and 3 days. Then, the levels gradually declined. After the second infusion, which was followed by peptide vaccination, the cells appeared in the similar way to the first cycle. The peptide vaccine did not seem to affect the peripheral cell kinetics. Dose-dependent kinetics were shown between the cohort 1(2 x108 cells) and the cohort 2 (1x109cells). In two patients, transient decline of peripheral abnormal cells that were MDS-related erythroblasts, and decrease of bone marrow blasts were observed, respectively. Although the clinical trial is still ongoing, transfer of WT1-TCR-gene transduced lymphocyte to MDS and AML patients is safe and tolerable. TCR- T cells appeared in peripheral blood with cell-dose dependent manner. Disclosures Fujiwara: Celgene: Honoraria, Other: Travel, Acomodations, Expenses. Akatsuka:Takara Bio. Inc.: Other: Advisor to the CAR project. Tomura:TAKARO BIO INC.: Employment. Nukaya:TAKARA BIO INC.: Employment. Takesako:TAKARA BIO INC.: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 130, No. 18 ( 2017-11-02), p. 1985-1994
    Abstract: WT1-specific TCR-redirected T-cell therapy for AML and MDS is safe, and the T cells persisted in vivo and trafficked to bone marrow. Transient decreases of leukemic cell in bone marrow were shown.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2017
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 4292-4292
    Abstract: Adoptive cell therapy with lymphocytes transduced with chimeric antigen receptor (CAR) is a promising strategy to treat cancer patients. Recent success in the treatment of patients with B cell malignancy by CD19-CAR encourages the development of successive CAR therapy targeting other tumor-associated antigens. However, the search for the appropriate target molecule for CAR, other than B cell markers, is a serious question. The target of CAR is generally limited to the cellular surface molecules, making difficult to expand CAR therapy for broad range of cancer patients. Inspired by the physiological recognition of epitope peptide and MHC molecule (pMHC) by T cells, we have generated a series of antibodies that recognize the pMHC complexes with peptides derived from tumor antigens expressed intracellularly. We isolated an scFv antibody clone WT#213 that can specifically recognize WT1 p235-243 peptide (CMTWNQMNL) complexed with HLA-A*24:02 molecule by the screening of human antibody scFv phage display library. We have constructed retrovirus that encodes the CAR consists of WT#213 and intracellular signal transduction domains of CD3z and GITR (WT#213 CAR). We confirmed the specific recognition of endogenous WT1-expressing cells by the CAR-T cells with the intracellular cytokine staining and the 51Cr release cytotoxic assay. Utilizing NOG immunodeficient mice, we demonstrated the effectiveness of adoptive cell therapy with WT#213 CAR against the WT1 expressing HLA-A*24:02 positive human leukemia cells. To evaluate the safety of the WT#213 CAR, we predicted the potential property of WT#213 CAR to cross-react to normal tissues in humans. We conducted alanine scan analysis of WT1p235-243 peptide that was recognized by WT#213 CAR as well as the TCR derived from CTL clone TAK-1 which recognizes same epitope peptide in association with HLA-A*24:02 to define the amino acids that were critically important in the recognition by the WT#213 CAR or TAK-1-derived TCR. After BLAST search, we synthesized the normal protein-derived peptides with potential risk of cross-reactivity, and tested the recognition of these peptides by WT#213 CAR or TAK-1-derived TCR. Although the critical peptides, and therefore the peptides with potential risk, were quite different between the WT#213 CAR and TAK-1-derived TCR, none of these peptides showed the stimulation of WT#213 CAR or TAK-1-derived TCR. The results here suggest that the immunotherapy with WT#213 CAR will be effective for the treatment of the leukemia patients without the predicted risk at least in the evaluation we performed. Figure 1. Figure 1. Disclosures Ikeda: Takara Bio Inc.: Research Funding. Akahori:Takara Bio Inc.: Research Funding. Miyahara:Takara Bio Inc.: Research Funding. Amaishi:Takaa Bio Inc.: Employment. Okamoto:Takara Bio Inc.: Employment. Mineno:Takara Bio Inc.: Employment. Takesako:TAKARA BIO INC.: Employment. Fujiwara:Celgene: Honoraria, Other: Travel, Acomodations, Expenses.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 1653-1653
    Abstract: Elderly patients (pts) with acute myelogenous leukemia (AML) and high-risk myelodysplastic syndrome (MDS) particularly who are ineligible for allogeneic hematopoietic stem cell transplantation (allo-HSCT) and have disease relapse after allo-HSCT still have a poor prognosis. Thus, the development of novel treatment option providing higher response rate and prolonged survival time for those patients still remains an unmet need. Because not a few clinical and preclinical studies have described a promising value of Wilms Tumor 1 (WT1), a leukemia-associated antigen as a therapeutic target of antileukemia immunotherapy, we conducted a clinical study of novel adoptive immunotherapy using gene-modified autologous lymphocytes expressing WT1-specific T-cell receptor (TCR) for the treatment of refractory AML and high-risk MDS. A multicenter phase 1 study was conducted to assess feasibility, safety and preliminary antileukemia reactivity of patient-derived gene-modified lymphocytes expressing WT1-specific TCR. Antigen-specific TCR-gene transfer may cause a serious autoimmune disease mediated by mispaired TCR between introduced and endogenous TCR α/β chains. To avoid that, we established a retroviral vector system encoding siRNAs for endogenous TCR genes (siTCR vector). We conducted a first-in-human clinical trial employing this siTCR vector. After given written informed consents, mononuclear cells were collected from at most 200ml of peripheral blood (PB) from each patient. Then, proliferating lymphocytes pre-cultured with IL-2, anti-CD3 antibody and RetroNectinTM were infected with a retroviral vector, MS3-WT1-siTCR composed of DNAs encoding WT1235-243/HLA-A*24:02 complex specific TCR-α/β chains and siRNAs against endogenous TCR genes. Expanded gene-modified lymphocytes (WT1-siTCR/T cells) in additional culture for 13-14 more days were harvested and frozen until use. Eligibility included HLA-A*24:02 positive pts with refractory AML or high-risk MDS, 〉 20 y.o, ineligible for allo-HSCT and performance status of 0 to 2. WT1-siTCR/T cells were intravenously infused twice on days 0 and 28. Heteroclitic WT1235-243 ninemer peptide (300mg) emulsified with MontanideTM was given subcutaneously on day 2 and 16 after the second infusion. Besides safety assays, kinetics of WT1-siTCR/T cells in PB, immunological responses and residual leukemia burden determined by qRT-PCR for WT1 mRNA were serially measured until day 58 since the first infusion. Among 12 pts enrolled, 8 pts (5 AML, 3 MDS) with a median age of 68.5 y. received study treatment. Three pts received 2x108 cells/ infusion (cohort 1), 3 received 1x109 cells/ infusion (cohort 2), and 2 received extra-cohort doses. Median follow-up time after the first infusion was 257 days (as June 13, 2016). At the first infusion, all pts contracted progressive disease. Circulatory WT1-siTCR/T cells retaining the target reactivity appeared immediately after each infusion, peaked between 1 to 3 days, and declined thereafter. WT1 peptide vaccination did not seem to affect the transition of infused cells. Values of WT1 mRNA in PB were transiently suppressed in all pts and declined in 4 pts thereafter. Clinical outcomes included one with stable disease and 2 pts with partial remission (PR). In one with PR, the epitope-spreading phenomenon was suggested. In all pts, no serious adverse events associated with infused WT1-siTCR/T cells were observed. Adoptive transfer of autologous WT1-siTCR/T cells was feasible and safe. Although the persistence of infused WT1-siTCR/T cells was limited, infused WT1-siTCR/T cells at least seemed to be involved in the antileukemia reactivity. Disclosures Tawara: Astellas: Honoraria. Akatsuka:Takara Bio Inc.: Consultancy. Nukaya:Takara Bio Inc.: Employment. Takesako:Takara Bio Inc.: Employment.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 3216-3216
    Abstract: Background: Adult T-cell leukemia/lymphoma (ATL) is a refractory peripheral T-cell malignancy caused by human T-lymphotropic virus type 1 (HTLV-1) infection. Although only allogeneic hematopoietic stem cell transplantation (allo-HSCT) displaying the graft-vs. ATL (GvATL) can bring durable remission, allo-HSCT is largely ineligible for newly diagnosed ATL patients due to disease aggressiveness and advanced age-related conditions. Thus, a novel treatment with safety and efficacy instead of allo-HSCT still remains an unmet need, and a cellular immunotherapy using TCR or CAR gene-modified immune cells exerting GvATL could be such an option. However, to generate those effector cells from autologous T cells of heavily pre-treated ATL patients faces many obstacles. To circumvent those hurdles, an employment of unconventional allogeneic Vγ9/δ2-T cells which are potentially free from the risk of GVHD could provide greater treatment opportunity for ATL patients due to highly extended donor availability. Taking above, here, we have newly devised an adoptive immunotherapy using a novel HTLV-1 p40Tax-specific TCR gene-modified allogeneic Vγ9/δ2 T cells against ATL. Methods: After written informed conscent, we firstly established novel HLA-A24 restricted TCR-α/β genes from HTLV-1 P40Tax301-309 (SFHSLHLLF)/HLA-A24 tetramer-positive peripheral CD8+T-lymphocytes of ATL patinets in durable remission using a single cell cloning method. Then, we confirmed that T cells gene-modified with these TCR-α/β genes exerted the epitope-specific and HLA-A24-restricted responses. Next, in order to achieve highly stable expression of this TCR-α/β heterodimer on gene-modified Vγ9/δ2-T cells, we newly developed a retroviral vector co-expressing TCR-α/β and CD8 α/β genes using self-cleaving P2A and E2A peptides. Using this vector, allogeneic Vγ9/δ2-T cells from healthy donors numerously expanded with high purity in our novel culture system were subjected to gene-transfer to express relevant TCR α/β complex. Thereafter, we asssessed target-reactive cytokine production and cytocidal activity mediated by those gene-modified allogeneic Vγ9/δ2-T cells both in vitro and in vivo. Finally, we additionally assessed a potential risk of GVHD using intravenous administration of another TCR gene-modified Vγ9/δ2 T-cells in vivo. Results: To start with PBMCs from healthy donors, allogeneic Vγ9/δ2-T cells were stably multiplied greater than thousandfold with a quite high purity (≥95%) using our novel bisphosphonate derivative PTA (tetrakis-pivaloyloxymethyl2-(thiazole-2-ylamino) ethylidene-1,1-bisphosphonate) combined with both 25 ng/ml of IL-7 and IL-15 in culture for 8 to 10 days. The stable expression of introduced TCR α/β heterodimer on Vγ9/δ2-T cells were successfully achieved by co-expression of CD8 α/β molecule. Those gene-modified Vγ9/δ2-T cells successfully recognized target peptide (SFHSLHLLF) in an HLA-A24 restricted fashion, and similarly demonstrated a cytocidal activity both in vitro and in vivo against HLA-A24 positive HTLV-1 infected cell lines (TL-Su and ILT#Hod), but not HLA-A24-negtive/Tax-positive cell line ILT#37 or HLA-A24-positve/Tax-negative cell line ATN-1. Furthermore, intravenously administered those TCR gene-modified Vγ9/δ2-T cells quickly and durably eradicated luciferase-gene modified TL-Su cells, but not ATN-1 cells in xenografted immunodeficient (NOG) mice, examined by in vivo imaging system. Finally, infused HLA-A2 restricted and NY-ESO-1 specific TCR (G50) gene-modified Vγ9/δ2-T cells exerted durable antitumor activity without causing GVHD using NOG mice xenografted with HLA-A2 positive melanoma cell line cells (NW-MEL-38). Conclusions: Our preclinical observations here obviously demonstrated the potential utility of TCR-α/β gene-modified allogeneic Vγ9/δ2-T cells for the treatment of ATL without causing GVHD. Further studies regarding biological behaviors of HTLV-1 Tax specific TCR-α/β gene-modified allogeneic Vγ9/δ2-T cells following target recognition in vivo are warranted, however, based on these lines of evidence and currently conducting assessments using clinical samples, we are planning to launch a novel clinical trial, particularly focusing on the applicability of HLA partially matched relative donors, as the source of gene-modified allogeneic Vγ9/δ2-T cells, which could highly extend the donor availability. Disclosures Fujiwara: BrightPath Biotherapeutics, Co.,Ltd.: Other: member of the department endowed by BrightPath Bio. Okumura:BrightPath Biotherapeutics, Co.,Ltd.: Other: member of the department endowed by BrightPth Bio.. Miyahara:BirghtPath Biotherapeutics, Co., Ltd.: Other: member of the department endowed by BrightPath Bio.. Wan:BrightPath Biotherapeutics, Co., Ltd.: Other: member of the department endowed by BrightPath Bio.. Tawara:Astellas Pharma: Research Funding; Ono Pharmaceutical: Research Funding; Kyowa Hakko Kirin: Honoraria, Research Funding. Shiku:BrightPath Biotherapeutics, Co., Ltd.: Other: Chair of the department endowed by BrightPath Bio..
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2009
    In:  Cancer Research Vol. 69, No. 23 ( 2009-12-01), p. 9003-9011
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 69, No. 23 ( 2009-12-01), p. 9003-9011
    Abstract: Adoptive T-cell therapy using lymphocytes genetically engineered to express tumor antigen-specific TCRs is an attractive strategy for treating patients with malignancies. However, there are potential drawbacks to this strategy: mispairing of the introduced TCR α/β chains with the endogenous TCR subunits and competition of CD3 molecules between the introduced and endogenous TCRs can impair cell surface expression of the transduced TCR, resulting in insufficient function and potential generation of autoreactive T cells. In addition, the risk of tumor development following the infusion of cells with aberrant vector insertion sites increases with the vector copy number in the transduced cells. In this study, we developed retroviral vectors encoding both small interfering RNA constructs that specifically down-regulate endogenous TCR and a codon-optimized, small interfering RNA–resistant TCR specific for the human tumor antigens MAGE-A4 or WT1. At low copy numbers of the integrated vector, the transduced human lymphocytes exhibited high surface expression of the introduced tumor-specific TCR and reduced expression of endogenous TCRs. In consequence, the vector-transduced lymphocytes showed enhanced cytotoxic activity against antigen-expressing tumor cells. Therefore, our novel TCR gene therapy may open a new gate for effective immunotherapy in cancer patients. [Cancer Res 2009;69(23):9003–11]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2009
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Vaccine, Elsevier BV, Vol. 27, No. 49 ( 2009-11), p. 6854-6861
    Type of Medium: Online Resource
    ISSN: 0264-410X
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2009
    detail.hit.zdb_id: 1468474-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Journal of Translational Medicine, Springer Science and Business Media LLC, Vol. 11, No. 1 ( 2013), p. 246-
    Type of Medium: Online Resource
    ISSN: 1479-5876
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2013
    detail.hit.zdb_id: 2118570-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...